간행물

한국폐기물자원순환학회 학술대회자료집

권호리스트/논문검색
이 간행물 논문 검색

권호

2015년 추계학술발표회 논문집 (2015년 11월) 173

61.
2015.11 서비스 종료(열람 제한)
가축(돈)분뇨는 고농도의 유기성폐기물로서 높은 함수율을 나타내고 있기 때문에 처리에 중점을 두어야 할 부분이 수분 처리 방법이다. 이에 기존 가축분뇨 처리방법으로 고상과 액상을 분리하여 고상은 퇴비화, 액상은 액비화 또는 정화 처리 후 하천에 방류하여 방류수 기준을 만족하는 방법을 사용하고 있다. 하지만 본 연구에서는 기존기술개발의 차별화 및 기존기술의 회피 전략을 위해, 돈분뇨의 유기물을 고온발효미생물에 의해 분해하여 85℃ 이상의 열에너지를 발생시켜 수분을 제거하는 무방류시스템이다. 여기에 유기물 BOD, COD의 농도변화는 발효조 진행방향에 따라 현저하게 감소되어 90%, 80%의 제거효율을 나타내었으며, 질소 성분인 T-N, NH3-N 역시 발효조 진행방향에 따라 각각 72%, 74%의 제거효율을 나타내었다. 뿐만 아니라 고체연료의 발열량을 높이기 위해 무연탄, 코크스, 기름 등의 열량보조제를 첨가하는 기존 방법 대신에 돈분에 적당량의 퇴비를 첨가한 고체연료 제조방법으로 4,500kcal/kg 이상의 높은 발열량을 얻을 수 있었다. 화석연료의 연소 등에 의한 2차 오염을 방지할 수 있으며, 생산 단가가 저렴한 친환경 기술이다. 따라서 본 무방류시스템은 고온발효미생물의 발열반응에 의해 가축분뇨를 저렴한 비용으로 고액 동시에 처리 할 수 있으며, 높은 발열량의 고체연료를 제조할 수 있는 새로운 기술이다.
62.
2015.11 서비스 종료(열람 제한)
발생 폐목재는 점진적으로 증가하고 있으나 국내 낮은 재활용 기술 수준과 관리체계가 미흡하여 적절한 분리, 수집이 이루어지지 않고 일부만 재활용 한 후 버려지는 문제점이 있으며 혼합폐기물의 형태로 발생하여 불법 매립 및 소각에 의하여 처리되고 있는 실정이다. 단순 소각 보조재로 사용하고 있는 폐목재를 에너지 회수에 가치가 있는 대상으로 하여, 물리・화학적 성상을 조사하여 2차 환경오염 유발에 대한 기초 조사와 에너지화시설 설치 등의 방안을 제안하는 것이 연구의 시작점이다. 대전광역시에서 발생하는 폐목재의 발생량 및 성상을 분석하고 이를 통하여 안정적인 처리 방안과 다방면의 활용 방안, 그리고 가연성 폐자원 에너지 회수 방안을 검토한 결과 다음과 같은 결론을 도출할 수 있다. 첫 번째, 대전광역시 내 발생되는 폐목재는 평균 약 40톤/일로 발생되며 발생원에서 1차적으로 각 구에서 운영하는 재활용 센터로 반입되어 1차적 재활용 및 간이 파쇄를 거쳐 남은 폐목재는 구분 없이 최종 처리장인 폐목재 파쇄장으로 반입되어 처리 된다. 두 번째, 폐목재 파쇄장에서 파쇄 후 야적된 폐목재를 채취하여 분석한 결과 수분 전체 평균 13.3%, 가연분 80.0%, 회분 6.7%로 나타났으며 원소분석 결과 C 46.3%, H 5.8%, O 36.5%, N 2.1%, S 0.1%, Cl 0.3%로 나타났다. 세 번째, 폐기물 내 중금속 분석을 시행한 결과 전체 평균 Hg 0.1mg/kg, Cd 0.1mg/kg, Pb 3.9mg/kg, As 1.4mg/kg, Cr 5.1mg/kg으로 분석되어 중금속 용출 등에 대한 우려는 발생하지 않는 것으로 판단된다. 네 번째, 발생 폐목재에 대한 저위 발열량 분석을 수행한 결과 이론적 저위발열량은 전체 평균 3,860kcal/kg으로 분석되었으며, 열량계 측정 결과 3,955kcal/kg으로 분석되었다. 이론적 발열량과 열량계 측정 결과의 차이는 약 100kcal/kg으로 채취된 시료의 수분함량의 변화에 따라 다소 차이가 나타난 것으로 사료된다. 발생 폐목재의 특성과 대전광역시 내 발생되는 폐목재의 특성을 고려한 분석 결과를 기준으로 폐목재만을 처리하는 전용 보일러 설치로 여열 회수 등의 에너지화 방법을 통하여 처리 효율 및 경제성 등이 적절하다고 사료된다.
63.
2015.11 서비스 종료(열람 제한)
부영양화 및 적조현상의 발생 등에 따라 최근 영양염류에 대한 방류수 규제 기준이 점차 강화되고 있으며, 이에 따라 방류를 위해 영양염류 제거가 필요하다. 따라서 여러 가지 질소제거 방법들이 사용되고 있으며, 이중 하,폐수처리를 위해 사용되는 생물학적 질소제거 방법이 물리/화학적 처리공법에 비해 친환경적이고, 경제성을 갖춘 방법으로 평가되어 널리 사용되고 있다. 생물학적 질소제거는 두 가지 단계에 의하여 이루어진다. 이 중 첫 번째 단계(질산화)에서는 암모니아가 질산성질소로 산화되고 이 후 두 번째 단계(탈질소화)에서는 종속영양미생물(heterotrophic bacteria)들에 의해 질산성질소가 전자수용체로 사용되어 질소가스로 제거되어진다. 탈질 공정 이전에 질산화 과정에서 유기물이 대부분 소모되기 때문에 종속영양 탈질공정에서는 전자공여체로서의 유기탄소원이 부족하고, 이는 주로 메탄올, 에탄올 등을 사용하여 보충해 준다. 이 실험에서는 음폐수를 제철폐수의 탈질을 위한 대체탄소원으로 음폐수를 사용하여 탈질효율을 평가하였다. 음폐수는 탄수화물, 단백질, 지방 모두 포함된 복합 유기성 폐수이며,이를 탈질공정의 핵심 미생물인 탈질화 박테리아들의 생장에 필요한 탄소원으로 이용가능하기 때문에 적용되기에 용이한 대상물질이다. 다시 말해, 대체탄소원으로 사용 가능한 대상 물질이다. 실험은 duplicate로 수행하였고, 대체탄소원의 종류, 즉 RCS45와 음폐수가 독립변수이며, 탈질속도를 종속변수로 설정하였다. 결과적으로, RCS45와 음폐수를 대체 탄소원으로 사용했을 때, 탈질 속도는 각각 57.6과 36.4로 얻을 수 있었다.
64.
2015.11 서비스 종료(열람 제한)
2013년 기준 대구광역시의 정수슬러지 발생량은 98 톤/일로 나타났으며, 이들 정수슬러지 중 약 23.2%가 대구소재 성서・서대구산업단지에 공업용수를 공급하는 J 정수사업소에서 발생한 것으로 나타났다. 이렇게 발생되는 정수슬러지는 하수처리 과정에 발생되는 슬러지에 비하면 많은 양이라고 볼 수 없지만, 정수장이 대형화되고, 하천유량의 감소와 환경규제의 강화 등으로 하천이나 토양으로의 직접배출이 규제되면서 정수슬러지의 처리가 현안으로 부각되었다. 발생되는 모든 정수슬러지는 비용을 지불하고 시멘트의 원료로 처분되고 있어 처리비에 대한 부담이 큰 실정이다. 정수슬러지부터 유효한 알루미늄 자원을 함유하고 있음에도 불구하고 매립・해양투기에 의해 처리되거나 시멘트의 원료와 같이 제한된 산업 분야에서만 재활용되고 있는 실정이다. 아울러 정수슬러지 처리비용은 2013년 기준으로 톤당 35,000원으로 년간 약 15억원에 이르고 있으며, 처리 비용은 지속적으로 증가될 가능성이 높다고 알려져 있다. 이와 같이 단순 매립처분의 한계점이나 처리비용의 상승을 고려한다면, 정수슬러지의 다양한 활용 방안의 모색이 시급하다고 볼 수 있다. 이에 따라 본 연구에서는 기존 매립, 소각에 의해 처리되었던 정수슬러지로부터 알루미늄을 회수하는 방법들을 연구하여 기존 응집제와 총인 제거효율이 유사한 재생응집제로 제조하여 공공하폐수처리장과 산업단지 소재 기업들에 적용하고자 한다.
65.
2015.11 서비스 종료(열람 제한)
음식물쓰레기의 혼합량 변화에 따라 제조된 황토볼의 단면 및 외관을 살펴본 결과 동일한 조건에서 소성하였음에도 불구하고 음식물쓰레기의 함량이 높을수록 내부에 탄화물의 잔량이 많은 것으로 나타났다. 또한, 음식물쓰레기의 함량이 상대적으로 높은 경우 외부에도 탄화물이 형성되어 있으며, 소성시 음식물쓰레기의 연소가스가 빠르고 많이 방출됨에 따라 황토볼의 외부표면이 갈라지는 현상이 발생하거나 가스 분출구가 명백히 나타난 것이 관찰되었다. 음식물쓰레기 혼입량이 30%의 경우 내부에 약간의 탄화물이 남아있지만 공극이 많이 관찰되고 외관도 양호한 것으로 나타났다. 10% 및 20%의 경우 외관은 아주 양호하였지만 음식물쓰레기의 함량이 낮아 내부 공극은 많이 형성되지 못한 것으로 관찰되었다. 따라서, 제조된 황토볼의 내부 공극 및 외관상 양호성으로 볼 때 적정 음식물쓰레기 혼합비는 30%인 것으로 판단되었다. 외관이 양호한 황토볼의 내부를 주사전자현미경을 이용하여 관찰해본 결과 음식물쓰레기 혼입량이 많을 경우 내부 기공형성이 매우 잘 되어 비교적 큰 공극이 형성되었을 뿐만 아니라 박편이 매우 작고 복잡한 구조가 형성되어 있음을 알 수 있었으나, 적정량 이하의 경우 박편이 상대적으로 크고 기공 형성이 잘 되지 않아 공극이 작은 것으로 관찰되었다. 이러한 이유는 음식물쓰레기 혼합량이 적으면 소성시 황토볼 내부로부터 방출되는 연소가스가 상대적으로 강도가 약한 부분으로만 방출되기 때문에 내부구조가 단순해지고 기공이 잘 형성되지 않는 것으로 판단된다. 현미경 관찰 결과로부터 본 연구의 기능성 황토볼 제조시 적정 음식물쓰레기 혼합비는 30%임을 재확인할 수 있었다.
66.
2015.11 서비스 종료(열람 제한)
SiO2 함량이 비교적 높고, 점착성과 소성시 내구성이 매우 크며, 손쉽게 구할 수 있고, 황토와 유사한 입자로 구성된 점토를 부가하여 황토볼의 기계적 강도를 높이고자 본 실험을 수행하였다. 점토의 함량이 증가함에 따라 제조된 담체의 압축강도가 증가하는 경향을 보였고, 반면 공극율, 흡수율 및 비표면적은 다소 감소하는 경향을 나타내었다. 황토와 점토 혼합량 변화에 따른 황토볼의 압축강도 변화를 보면 점토 혼합비 10% 이상 30%까지는 점토 혼합량이 증가할수록 압축강도가 선형적으로 증가하는 경향을 보였으나 이후 증가율이 다소 완만하게 나타났다. 이로 미루어 볼 때 SiO2 함량이 높은 점토가 황토볼 제조시 기계적 강도를 증가시켜 줄 수 있음을 확인할 수 있었다. 점토 혼합량 변화에 따른 공극율 변화를 보면 압축강도 변화와는 상반되게 점토 함량이 증가함에 따라 공극율이 감소하는 경향을 나타내었는데, 점토 혼합량 20%까지는 감소율이 다소 크게 나타나다가 20% 이상부터는 상대적으로 감소율이 미미하게 나타났다. 흡수율과 비표면적 변화는 점토 혼합량이 증가함에 따라 거의 직선적인 감소 경향을 보였다. 황토만 사용했을 경우에 비하여 점토를 30%를 혼합할 때 압축강도는 매우 향상된 것으로 나타났으나, 공극율, 흡수율 및 비표면적의 감소가 크게 나타나 적정 혼합비라고 판단하기는 어려울 것 같다. 최적 황토 혼합량을 결정하기 위하여 radar graph 상에 총괄적으로 나타내어 평가해본 결과 공극율, 흡수율 및 비표면적의 감소는 다소 나타나지만 어느 정도의 압축강도의 향상을 보이고 있으며 상대적으로 양호한 물성을 가진 것으로 판단되는 점토 혼합량 20%를 최적 혼합비로 결정하는 것이 바람직할 것으로 판단된다. SEM 촬영 사진을 보면 점토 혼합비가 비교적 적은 10% 및 20%의 경우는 박편이 작고 복잡하게 형성되어 있는 것으로 관찰되는데 반하여, 점토 혼합비가 상대적으로 많은 30% 및 40%는 박편이 다소 크게 형성되어 있는 것이 관찰되었다. 이상의 실험 결과, 기계적 강도를 나타내는 압축강도 및 결합구조 측면에서는 점토의 혼합량이 높은 것이 유리하나 공극율, 흡수율 및 비표면적이 작아지는 단점이 있으므로, 압축강도의 증가율이 크고, 공극율 및 비표면적의 감소율이 다소 작은 점토 혼합량 20%를 최적 혼합비로 결정하는 것이 바람직할 것으로 판단된다.
67.
2015.11 서비스 종료(열람 제한)
음식물쓰레기의 적정 혼합비를 결정하기 위하여 음식물쓰레기 혼합량을 10, 20, 30, 40 및 50%로 혼입하여 반죽 후 구형으로 성형한 것을 약 24시간동안 자연 건조시키고 2시간 동안 105℃ dry oven에서 열풍건조, 900±10℃ 전기로에서 1시간동안 소성하여 제조・완성하였다. 적정 음식물쓰레기 혼합량에서 기계적 강도를 향상시키기 위하여 황토와 점토의 혼합비를 6:1, 5:2, 4:3 및 3:4로 혼입하여 황토볼을 제조하였다. 각 제조 조건에서 제조된 황토볼의 물성 평가를 위해 압축강도, 공극율, 흡수율, 비표면적을 측정하였다. 또한, 제조된 황토볼의 표면 및 내부의 형상은 주사전자현미경(Scanning electron microscope: SEM, DSM940A, Germany) 촬영을 통하여 관찰하였다. 황토와 점토의 주성분은 SiO2, Al2O3 및 Fe2O3로 분석되었는데, 특히, SiO2와 Al2O3가 전체 화학조성 중 높은 비율을 차지하고 있는 것으로 나타났다. SiO2의 경우 황토 및 점토에 대해 각각 약 45.28 및 60.38%로 점토가 약 15% 정도 더 높았으며, Al2O3의 경우 황토 및 점토에 대해 각각 약 21.98 및 20.35%로 비슷한 함량을 보였다. Fe2O3의 함량은 황토와 점토에 대해 각각 12.76 및 6.34%로 황토가 점토에 비해 약 2배 정도 더 높았다. SiO2의 경우 성형성, 결합성 및 건조강도를 좋게 하고, Al2O3는 압축강도와 내한성을 좋게 한다. 반면, Fe2O3의 경우 소성시 융제역할을 하여 기공률을 좋게 하지만 소성온도가 낮을 경우 기계적 강도가 낮아지는 것으로 보고되고 있다. 음식물쓰레기 혼합량이 증가함에 따라 압축강도가 감소하는 경향을 나타내었는데, 음식물쓰레기 함량 30%까지는 완만한 감소경향을 보이다가 이후 음식물쓰레기 혼합량이 증가함에 따라 직선적으로 급격한 감소 경향을 보였다. 공극율은 압축강도와는 상반되게 음식물쓰레기의 혼합량이 증가함에 따라 증가하는 경향을 나타내었는데 음식물쓰레기 함량 30% 까지는 직선적으로 증가하는 경향을 보였으나, 음식물쓰레기 혼합량 30% 이상에서는 증가 경향이 상대적으로 낮게 나타났다. 음식물쓰레기 혼합량 변화에 따라 제조된 황토볼의 흡수율과 비표면적은 음식물쓰레기 함량이 증가함에 따라 흡수율 및 비표면적 모두가 증가하는 경향을 나타내고 있는데, 흡수율은 공극율과 유사한 경향을 보이고 있는데 음식물쓰레기 혼합량 40% 까지 거의 선형적으로 증가하다가 이후 다소 완만한 증가를 보이고 있다. 비표면적은 음식물쓰레기 혼합량이 증가함에 따라 거의 비례적으로 증가하는 경향을 나타내었다.
68.
2015.11 서비스 종료(열람 제한)
폐슬러지와 황토, 점토를 혼합하여 Bio-block을 제조하였다. 슬러지로부터 유래하는 유기물질은 소성 중 완전히 분해되기 때문에 용출되지 않으므로 블록으로부터 용출되어 나올 수 있는 물질은 제조 원료에 존재할 수 있는 중금속류이다. Bio-block 제조에 사용된 건조 폐슬러지, 황토 및 점토와 제조된 Bio-block 내에 함유되어 있는 중금속 용출로 인한 토양 및 지하수 등의 환경에 유해를 가할 수 있기 때문에 환경으로의 용출정도를 평가하기 위해 폐기물공정시험방법에 규정된 용출시험법(Korea Leaching Test; KLT)을 이용하여 각각의 중금속 함량을 분석하였다. 중금속 용출 실험은 건조 폐슬러지, 황토 및 점토와 제조된 Bio-block을 입경 5 mm 이하가 되도록 분쇄한 후 국내 폐기물 공정시험방법에 의한 용출시험(KSLT : Korea Standard Leaching Test)방법에 따라 용출시험을 실시하였으며, 용출된 시료를 원자흡광광도계(AA 240FS, Varian)로 Cd, Cu, Pb 및 As의 농도를 측정하였다. 중금속 용출시험 결과 용출액 중의 유해물질 함유량의 항목에서 Dry sewage sludge의 경우 Cu 항목에서 5.31mg/L로 환경기준을 초과하는 농도가 검출되었으며, Cd, Pb 및 As는 환경기준을 초과하는 농도를 보이지는 않았다. Loess는 모든 항목에서 낮은 농도를 보였으며, Clay의 경우는 As가 73.66㎍/L로 가장 높은 농도를 보였으나 기준을 초과하지는 않았다. 제조된 Bio-block에서 용출된 Cd, Cu, Pb 및 As의 농도를 측정한 결과 모든 Bio-block에서 환경기준을 초과하는 농도를 보이지는 않았다. Bio-block의 표면 및 내부 형상 분석은 제조된 Bio-block을 60±5℃에서 24시간 건조시킨 후 백금 코팅으로 전처리를 수행하여 박편을 제작하였으며, 전계방사형 주사전자현미경(Field emission Scanning Electron Microscope; FE-SEM, S-4800+EDS; HORIBA : EX-250, Japan)을 이용하여 관찰하였다. Bio-block의 표면 및 내부의 형상을 살펴보면 슬러지 비율이 증가할수록 표면 및 내부 결합 구조가 좋아지는 것을 볼 수 있었다. 또한 Bio-block 내 기공이 커지고 증가하며, 표면 및 결합 구조가 복잡하게 형성되어 있는 것을 볼 수 있었다. 이는 슬러지 비율이 증가할수록 소성과정을 통하여 Bio-block 내 폐슬러지가 회화되면서 기공을 크게 형성하고, 기공의 수 또한 증가하는 것으로 판단된다. 슬러지 비율이 15%인 Bio-block과 20%인 Bio-block의 경우 기공의 크기와 분포가 다른 Bio-block들에 비해 뚜렷이 구별된다. 그러나 슬러지 비율이 20%인 Bio-block은 기공의 크기는 크지만 표면 및 결합 구조가 다소 약하고 거칠어 보이는 것으로 나타났다.
69.
2015.11 서비스 종료(열람 제한)
하수슬러지를 이용한 투수블록 제조에 있어서 하수슬러지 케익 : 황토 : 점토의 최적 혼합비를 결정하기 위해 각 재료를 정해진 혼합비로 혼합한 후 소성하여 제조하였다. 제조된 투수블록의 상태를 육안으로 관찰하여 실험에 이용 가능 여부를 판단해본 결과 혼합비에 따라 일부는 소성 후 투수블록이 부서지거나 갈라지는 현상이 관찰되어 추후 실험에 이용 불가능할 것으로 판단되었다. 하수슬러지 케익과 황토 및 점토의 혼합비에 따라 제조된 투수블록의 압축강도를 측정한 결과 하수슬러지 케익 : 황토 : 점토의 혼합비가 5 : 65 : 30 인 경우와 10 : 65 : 25의 경우 그리고 15 : 65 : 20의 경우 공히 1,600N/mm² (163.3kg/mm²)으로 다른 혼합비로 제조된 투수블록보다 높은 압축강도 값을 나타내었다. 따라서 슬러지의 혼합비가 15% 이상일 경우 부서지는 현상이 발생하였으며, 황토는 65%의 혼합비일 때 높은 압축강도를 나타내었다. 그러나 황토의 함량이 적거나 점토의 함량이 많을 경우 압축강도가 현저히 낮아지는 것을 알 수 있었다. 투수블록의 흡수율 분석을 위하여 제조된 투수블록을 건조기에 넣어 110±10℃에서 24시간동안 건조시켜 데시케이터에서 방랭한 후 흡수율 측정방법에 따라 실험을 실시한 결과 슬러지 함량이 증가할수록 투수블록의 흡수율이 증가하는 경향을 보였다. 또한 같은 슬러지 함량에서 Clay의 함량이 높은 투수블록의 흡수율이 높은 것을 알 수 있었다. 이는 슬러지 함량이 높을수록 소성시 슬러지가 회화되면서 투수블록 내에 기공을 형성하기 때문인 것으로 판단된다. 본 실험에서 가장 높은 흡수율을 보인 투수블록은 37.84%의 흡수율을 보였으며, 가장 낮은 흡수율을 보인 투수블록은 20.68%의 흡수율을 보였다. 소성 공정을 통해 제조된 투수블록 중 강도가 약하여 성형이 힘든 배합비를 제외하고 나머지 혼합비의 투수블록 4개를 붙여 투수계수 측정을 위해 제작한 틀에 부착하였다. 투수블록의 투수계수 측정방법은 제작된 틀상부에 물을 넣어 일정한 수위차에서 10분간 투수되는 물의 양을 측정하였다. 그 결과 슬러지 혼합비가 5% 및 10%인 투수블록은 2.4~3.6×10-4cm/sec으로 아주 작은 값을 보였다. 그러나 슬러지 혼합비가 15%인 투수블록은 16.8~17.9×10-4cm/sec으로 슬러지 혼합비 5%인 투수블록에 비해 매우 높은 값을 보였다. 본 실험 결과 슬러지 함유량이 증가할수록 투수블록의 투수계수 역시 증가하는 경향을 나타내었는데 이는 블록내 슬러지 함유량이 증가하면 투수블록을 소성시키는 과정에서 투수블록내 슬러지가 회화됨으로써 기공을 형성하기 때문인 것으로 판단된다. 슬러지 혼합비가 20%인 투수블록의 경우 투수계수는 24.4~46.3×10-4cm/sec으로 슬러지 혼합비가 15%인 투수블록보다 큰 값을 보였으나 이는 투수블록 표면에 생긴 균열 때문인 것으로 판단된다.
70.
2015.11 서비스 종료(열람 제한)
축산폐수는 질소와 인을 다량으로 포함하고 있으며, 1, 2차 처리 후 90% 제거되는 유기물과는 달리 질소나인 등의 영양염류는 제거효율이 상대적으로 낮다. 이 처리수가 그대로 수계에 방류되면 녹조현상 및 부영양화의 원인이 되기 때문에 폐수의 3차 처리(고도처리)가 필수적이다. 그동안의 연구에서 축산폐수 내 영양염류를 제거하는 데에 미세조류를 이용하는 것이 효과적이라는 사실이 밝혀졌으며, 이때 생산되는 바이오매스는 바이오 에너지의 생산원료로도 활용이 가능하다. 이에 본 연구는 축산폐수 고도처리에 활용 가능한 미세조류 Chlorella emersonii 종의 성장 동역학 및 질소농도변화에 따른 광독립영양성장율과 질소 제거효율을 비교하여 축산폐수의 고도처리 적용 가능성이 가장 높은 배양환경을 도출하고, 미세조류를 이용한 축산폐수 고도처리의 적용 가능성을 response surface methodology를 이용하여 평가하였다. 본 연구는 예비실험 결과 질소 제거와 바이오매스 생산에 효과적인 것으로 나타난 녹조류인 Chlorella emersonii 종을 이용하였고, 축산폐수는 1차 및 2차 처리를 거치고 난 후의 유출수를 공급받아 GF/C filter로 여과 후 고압멸균을 하는 전처리 후 사용하였다. 모든 실험은 triplicate로 진행되었고 평균값을 나타낸다. 실험은 500 mL media bottle (TriForest Enterprises, Inc, USA)을 광반응조로 이용하였고, 유효부피는 400 mL로 설정하였다. 광독립영양성장을 위한 무기탄소원 공급을 위해 0.04%의 CO2 를 포함한 공기를 6 Lair/min의 속도로 0.45 μm filter를 통과시킨 후 주입하였다. 광에너지원은 특수제작된 LED Light를 이용하여 photosynthetically active ratiation으로 실험 조건에 따라 반응조 외부표면 측정기준 80, 160, 240 μmol/s・m²이 되도록 조절해주었다. Shaking incubator를 활용하여 실험 조건에 따른 온도와 교반속도를 각 25, 35, 45℃, 110 rpm으로 제어하였다. 전처리를 모두 거친 축산폐수의 낮은 질소농도는 NH4Cl을 활용하여 반응조 내에서 100 mg N/L 내외의 범위에서 실험계획에 따라 조절하여 배양하였고 인의 농도는 제한하지 않았다. 미세조류 C. Emersonii 종을 최적의 조건에서 배양할 경우 최대 61%의 질소 제거율을 나타냈다. 또한 최적의 조건에서 평균 비성장속도가 0.5096 day-1 이상으로 나타나 바이오매스를 대량으로 생산해낼 수 있는 가능성을 보였다. 종합하면, 본 연구는 미세조류 C. Emersonii 종을 축산폐수처리에 실제 적용이 가능함을 보임과 동시에 유용자원이 되는 바이오매스의 생산이 가능함을 확인하였다.
71.
2015.11 서비스 종료(열람 제한)
산업의 발전과 경제규모의 팽창에 따라 에너지소비가 크게 증가되는 가운데 대기오염물질배출이 크게 늘어나면서 심각한 환경문제를 야기하고 있다. 이중에서 황화수소(H2S)는 계란 썩는 냄새가 나는 무색의 유독한 기체로서 인체의 위장이나 폐에 흡수되어 질식, 폐 질환, 신경중추마비 등을 발생시키고 있다. H2S 가스는 폐기물 매립장, 석유 정제업, 펄프공업, 도시가스 제조업, 암모니아공업, 하수처리장 등 다양한 곳에서 발생하고 있으며, 이를 처리하기 위하여 심냉법, 흡수법, 막분리법, 흡착법 등 여러 가지 처리방법이 제시되었다. 본 연구에서는 실험실규모의 장치를 이용하여 바이오매스 커피부산물을 활용한 악취저감용 흡착소재개발을 위해 커피찌꺼기를 대상으로 탄화, 스팀활성처리등의 과정을 거쳐 흡착제를 제조하였으며, BET분석, SEM등을 이용한 물성분석과 회분식의 흡착평형실험을 통한 흡착특성을 고찰하였다. 실험결과, 커피찌꺼기를 활용하여 탄화 및 활성처리과정을 거치면서 얻을 수 있는 흡착제의 수율은 15 ~ 20%에 해당되는 것으로 밝혀졌다. 또한, 커피부산물은 스팀을 이용한 활성처리 과정에서 온도가 증가할수록. 시간이 증가할수록 스팀-탄소 화학반응에 의해 내부기공이 커지면서 비표면적이 증가되는 것으로 밝혀졌다. 아울러, 커피부산물을 소재로한 흡착제의 황화수소 평형흡착능은 활성탄을 능가하는 우수한 성능을 보임으로써, 악취제거용 흡착소재로 활용성이 클 것으로 예상되었다.
72.
2015.11 서비스 종료(열람 제한)
고도의 산업발달과 그에 따른 경제규모의 팽창은 방대한 양에 달하는 각종 유해물질의 발생을 가져왔으며 결국 이에 대한 처리능력의 한계와 함께 심각한 환경오염문제를 야기하고 있다. 특히, 악취 및 VOC 등은 규제가 강화됨에 따라 좀 더 엄격한 관리가 요구되고 있다. 이중에서 폐기물 매립장, 석유화학공업, 도시가스 제조업, 암모니아공업, 하수처리장 등 광범위하고 다양한 곳에서 발생하고 있는 황화수소(H2S)는 달걀 썩는 냄새가 나는 무색의 유독한 기체로 인체의 위장이나 폐에 흡수되어 질식, 폐 질환, 중추신경마비 등을 일으키는 위해성이 큰 기체로 분류되고 있어 이의 효율적인 처리방안 모색이 당면한 과제로 부각되고 있으며, 또한, 우리나라의 정수처리장에서 발생하는 정수슬러지는 정수장의 증설 및 상수도 보급율의 증가, 고도정수처리시설의 도입 등으로 계속 증가되고 있다. 이들의 처리는 대부분 매립과 해양투기에 의존해 왔으나 기존 매립장의 포화에 따른 새로운 부지확보의 어려움, 침출수배출에 따른 민원발생 등의 문제를 안고 있으며, 런던협약에 따라 2007년부터 해양투기가 금지됨에 따라 새로운 정수슬러지처리의 필요성이 고조되면서 친환경적이고 경제성있는 정수슬러지 재활용기술개발이 시급히 요청되고 있다. 본 연구에서는 정수슬러지를 이용한 신소재 흡착제의 제조 및 물성분석, 대표적인 악취인 황화수소를 대상으로 batch식 흡착평형실험과 연속식 파과성능실험을 수행하였다. 실험결과, 정수슬러지는 탄화 및 스팀활성화과정을 통해 기공의 확대와 함께 비표면적이 증가되는 것을 알 수 있었고, 약품처리할 경우 정수슬러지 내부구조상에 약품의 함침으로 기공이 막히는 현상이 일어나 비표면적이 감소하는 것을 알 수 있었다. 또한, 정수슬러지를 스팀이나 약품으로 활성처리할 경우 악취(황화수소)에 대한 흡착능이 0 ~ 35% 범위에서 향상되는 것으로 나타났으며, 전체적으로 활성탄대비 70 ~ 90%에 해당되는 비교적 양호한 평형흡착능을 갖는 것을 알 수 있었다.
73.
2015.11 서비스 종료(열람 제한)
2005년 유기성폐기물의 직매립이 금지되었다. 또한 유기성폐기물의 해양배출 기준 강화에 따라 2013년부터 음식물류폐기물의 해양배출이 금지되었다. 국내 2013년 음식물류폐기물 발생량은 전체 생활폐기물 중 26.0%인 12,501 톤/일 규모로 배출되고 있으며, 처리량은 2012년 대비 약 58.4%로 매년 급증하고 있다. 최근 음식물류폐기물의 처리방안으로 바이오가스화가 주목받고 있다. 정부는 “폐자원 및 바이오매스 에너지대책 실행계획”(환경부 2009) 등을 바탕으로 바이오가스화 시설의 신규 설치 및 운영을 추진하고 있다. 바이오가스화 시설의 신규 건설이 본격적으로 이루어지는 반면, 운전 효율성은 운전 및 유지관리 미숙, 계절별 영향 등으로 인하여 처리기준에 미치지 못하는 시설이 다수인 실정이다. 본 연구에서는 실제 운영 중인 A지역의 음식물류폐기물 바이오가스화 시설을 대상으로 계절별 산발효조의 정밀모니터링 및 시설 운영인자를 조사・분석하여 계절별 산발효조 상태에 따른 혐기소화조의 운전효율성을 평가하고자 하였다. 산발효조의 현황을 파악하기 위하여 봄, 여름, 가을에 걸쳐 휘발성지방산, 영양물질, CODcr 등의 정밀모니터링을 실시하였다. 또한 해당 시설의 바이오가스 생산량, 휘발성지방산 등과 같은 운영 자료는 2014년 3월부터 2015년 4월까지 약 1년 동안의 데이터를 바탕으로 월별 평균 값을 도출하였다. 분석결과와 운영 자료를 비교·분석한 결과, 여름철 온도의 상승의 영향으로 산발효조 내부에서 음식물류폐기물이 더욱 활발히 분해되어 휘발성지방산의 농도가 증가하였다. 이에 따라 여름철 산발효조의 영향으로 메탄생성율 및 바이오가스의 메탄 함량(%)이 저하되는 경향을 보였다. 특히 메탄생성율은 여름철(6~8월) 30.0~41.03 m³ CH4/tonFWL, 여름을 제외한 다른 계절의 경우 38.6~51.6 m³ CH4/tonFWL로 계절에 따른 차이를 나타내었다.
74.
2015.11 서비스 종료(열람 제한)
가축분뇨의 퇴/액비를 통한 자원화는 경종농가에서의 화학비료 사용으로 인한 양분집적 문제가 발생하고 있다. 따라서 가축분뇨 및 공동자원화시설과 연계한 질소 회수 기술 개발 및 적용을 통해 지역별 양분관리 기술 제공 및 양분총량제에 대응한 가축분뇨 자원화 기술 제공이 필요한 실정이다. 이에 본 연구에서는 가축분뇨 내에 존재하는 암모니아를 50% 회수함으로써 경제성을 증가 시키고 공정에서 발생하는 악취 문제를 2차적으로 해결함으로써 부가적인 효율을 증대시킬 수 있다. 또한 회수된 암모니아를 이용하여 암모니아수, 황산암모늄 등 암모니아화합물을 제조하여 제품화함으로써 부가가치를 창출할 수 있어 시설 투자비와 운전비 대비 부가가치 창출을 기대할 수 있다. 이에 실험실 규모에서의 50% 암모니아 회수 최적 조건과 회수된 암모니아를 이용하여 암모니아화합물 생성 최적 조건을 도출하였다.
75.
2015.11 서비스 종료(열람 제한)
유기성 폐자원(음식물류 폐수, 가축분뇨, 하수슬러지 등)의 해양투기 금지 및 폐자원 바이오매스 에너지화 정책에 따라 유기성 폐자원 에너지화는 중요한 국가적 과제로 부각되고 있다. 유기성 폐자원 처리의 경우 단독 처리시설은 38개소, 병합처리시설은 17개소가 운영 중에 있으나 개소당 처리량은 병합처리시설이 더 많은 것으로 나타났다(단독처리시설: 198천톤/년; 병합처리시설: 345천톤/년). 가축분뇨의 경우 타 유기성 폐기물에 비해 C/N 비가 높고 유기물 함량(Volatile Solids, VS 기준)이 낮아 에너지 전환 효율이 낮은 것으로 보고되고 있다. 이에 반해 음식물류 폐수의 경우 유기물 함량이 높고 C/N 비가 낮다. 따라서 가축분뇨와 음식물류 폐수 병합처리 시 가축분뇨의 원료적 단점을 보완할 수 있다. 병합처리시설 중 음식물류 폐수와 가축분뇨 병합처리 시설은 총 5개소가 운영 중에 있으며 혼합 비율은 1:0.5 ~ 182.5 (음식물류 폐수 기준)로 넓은 범위로 나타났다. 또한 소화효율(VS 기준)은 15.1 ~ 95.1%로 넓은 분포를 나타내었다. 이렇듯 음식물류 폐수와 가축 분뇨의 적정 혼합 비율에 관한 연구는 미비한 실정이다. 따라서 본 연구에서는 음식물류 폐수와 가축분뇨의 병합 비율에 따른 유기물 특성(Excitation-Emission Matrix (EEM), SUVA254, SUVA280 등)과 메탄 잠재량을 평가하였다. SUVA254와 SUVA280분석 결과에 따르면 가축분뇨는 음식물류 폐수에 비해 각각 6.8 및 8.1배 높은 것으로 나타났다. 회분식 메탄 잠재량 평가 결과, 가축분뇨의 비율이 낮아질수록 최대 메탄 발생량은 증가되는 경향으로 나타났다. 그러나 혼합 비율 대비 시너지효과를 평가한 결과, 1:1.5 (음식물류 폐수 기준) 비율에서 14.9%로 가장 높게 나타났다.
76.
2015.11 서비스 종료(열람 제한)
혐기성 고정상 반응기는 충전된 담체의 표면적에 미생물을 부착시켜 고효율 반응을 유도하는 반응기이다. 혐기성 고정상 반응기는 기본적인 부유성장식 공정인 CSTR반응기보다 상대적으로 짧은 체류 시간(HRT)에서 고농도의 유기물을 처리하는데 유용하다. 본 연구에서는 포항의 제철 공장에서 채취한 고로 슬래그를 담체로 이용한 상향류식 혐기성 고정상 반응기를 CSTR반응기와 비교해서 짧은 HRT에서 미감수를 처리하는데 적용하였다. 또한 높은 유기물 부하율 조건에서 혐기성 고정상 반응기의 공정 효율과 담체로써 고로 슬래그의 이용가능성에 대해 연구하였다. 쌀은 아시아의 대부분 나라에서 주식으로 먹고 있고, 쌀 이용 시 세척하는 과정에서 주요 폐기물로써 미감수가 대량 배출된다. 미감수는 높은 유기물 함량과 가용성 때문에 생물학적 분해가 쉽고, 혐기 소화에 의한 바이오 가스 생성에 적합하다. 본 실험의 반응기는 희석한 미감수(6.2 g COD/L)를 기질로 하여 HRT 10일에서 0.7일까지 점차적으로 감소시켜 운전하였다(유기물 부하율 기준 0.6 - 8.6 g COD/L·d). 운전 조건의 변화와 함께 유기물 제거율, 메탄 발생량, 메탄 수득율 등의 공정 인자가 변화하였고, HRT 3.4일에서 최대의 메탄 수득율(0.33 L/g COD)을 얻었다. HRT 3.1일에 추가적으로 denaturing gradient gel electrophoresis(DGGE)분석법을 이용하여 미생물 군집분석을 수행하였다.
77.
2015.11 서비스 종료(열람 제한)
국내 폐기물 관리법에 의한 사업장폐기물 중에서 주변 환경을 오염시킬 수 있는 유해한 물질을 함유한 폐기물인 지정폐기물은 보관, 수집운반 및 처리 등의 기준이 생활폐기물에 비해 엄격해 총 처리 과정에서 필연적으로 많은 비용이 발생한다. 이런 상황에서 지정폐기물의 유해성을 저감시켜 일반 폐기물화하여 처리하거나 재활용이 가능하다면 산업현장에 비용적 측면의 부담을 크게 완화할 수 있다. 이에 본 연구에서는 에폭시 수지 생산 산업공정에서 발생하는 지정폐기물을 대상으로 성상분석을 통해 유해물질의 이화학적 특성 및 성상을 파악하고 일반폐기물화 또는 재활용에 대한 가능성을 평가하였다. 2010년 환경부 폐기물 통계를 기준으로 가장 많은 폐기물을 배출하는 분야는 화학제품 제조업이며, 화학제품 제조업 중 본 연구에서는 에폭시수지 생산 공정 중 탈염분액 공정에서 나오는 폐기물을 현장에서 채취하여 실험에 사용하였다. 탈염분약 과정에서 나오는 폐기물은 주 원료인 비스페놀A와 여러 휘발성 유기화합물이 포함되어 있어 지정폐기물로 분류된다. 시료 운반과정에서 VOCs(휘발성유기화합물)의 휘발을 방지하기 위해 밀폐용기에 담아 실험실로 옮긴 후 냉장 보관하였다. 우선 폐기물의 이화학적 특성을 파악하기 위해 해당 시료에 대해 폐기물 용출시험, 발열량 분석 및 전원소 분석을 수행하였다. 분석 결과 중금속은 용출되지 않았으며, 발열량 4500 kcal/kg, 염소이온 0.67 %등으로 환경부 폐기물 재활용 기준은 충족하였다. 그러나 332,000 mg/kg 이상의 고농도 톨루엔이 존재했고 그 외에 자일렌 36 mg/kg, 에틸벤젠 23 mg/kg, 클로로벤젠 15 mg/kg 등 여러 휘발성 유기화합물도 함유되어있었다. 고농도의 VOCs는 인체에 노출될 경우 발암성 등의 유해성이 있으므로 재활용하기 위해서는 반드시 저감해야 한다. VOCs는 증기압이 높고 헨리상수가 크므로 고온 stripping이 가장 효율적인 방법으로 판단된다. 단, VOCs자체가 대기오염 물질이므로 stripping 후 배가스를 별도의 처리를 하지 않고 대기 중으로 방출할 경우 대기오염을 유발하게 된다. 따라서 stripping장치 후단에 활성탄을 충진한 column을 설치하여 탈기된 VOCs를 제거 할 수 있도록 설계하였다. 80℃온풍으로 폐기물 중의 VOCs를 stripping하자 초기에 8,000 ppm정도의 VOCs가 발생하였고, 약 20분 동안 농도가 급격히 저하되었다. 120분 후 부터는 20 ppm 내외의 농도를 나타내었다. 활성탄 후단에서는 유입농도에 관계없이 악취방지법에 의한 대기 배출허용기준인 30 ppm을 만족시켰다. 폐기물 중의 VOCs농도는 12900 mg/kg으로 감소하였으나 발열량은 거의 변화가 없어 폐기물 고형연료로 활용할 수 있는 것으로 나타났다.
78.
2015.11 서비스 종료(열람 제한)
기존의 젖산발효 공정은 순수배양을 통한 회분식 발효를 주로 이용하고 있다. 하지만 멸균과정의 필요와 생산성이 낮은 한계을 가지고 있는 등, 문제점들을 가지고 있어 혼합배양을 통한 연속식 발효가 대안이 될 수 있다. 혼합배양 환경에서는 젖산의 순도와 생산 효율을 높이기 위하여, 젖산균이 우세한 환경을 조성하는 것이 중요하다. 본 연구에서는 젖산균이 강산성 조건에서 뛰어난 저항력이 있다는 기존 연구결과를 바탕으로, 혼합배양 환경에서의 강산성 조건의 초기 운전 조건(pH 3.0)이 연속식 젖산발효에 미치는 영향에 대하여 실험하였다. 초기 운전 조건을 pH 3.0으로 고정시킨 반응기에서 초기 운전 조건을 젖산발효의 최적 pH 조건(pH 5.5)으로 유지한 반응기보다 높은 최대 젖산 농도(6.12 g COD/L), 젖산생성속도(0.51 g COD/L/hr), 수율(0.65 g COD/g CODremoved), 그리고 함량(94.8% LA/tSOA)을 보였다. 미생물군집구조 분석 결과, 세균군집구조의 변화는 HRT가 짧아질수록 초기 pH조건보다 HRT에 의한 선택압력에 더 큰 영향을 받는 것으로 나타났다.
79.
2015.11 서비스 종료(열람 제한)
본 연구에서는 퇴비화실험 재료인 복합유용미생물 슬러지와 일반슬러지의 미생물 군집 비교를 통해 복합유용미생물 슬러지에 대한 미생물학적 특성을 밝히고 일반슬러지 퇴비와 비교하여 복합유용미생물 우점 슬러지를 퇴비화 하였을 때 발현되는 미생물의 성상을 비교하여 복합유용미생물 우점 슬러지 퇴비가 토양에 시용 되었을 때 토양에 미치는 영향을 간접적으로 확인하고자 한다. 또한 현재 시판되고 있는 광합성균을 이용한 돈분퇴비와 같은 공정으로 본 실험에서 사용한 복합유용미생물을 우점 시킨 돈분퇴비를 제조하여 시판퇴비와의 비교는 물론 퇴비 제조 방법에 따른 복합유용미생물 군집의 차이점을 알아보고자 하였다. Pyrosequencing을 통해 연구에서 사용된 복합유용미생물 우점 슬러지의 bacteria 군집 문(Phylum)의 수준에서 분석한 결과 Proteobacteria(41.30%), Gemmatimonadetes(14.12%)로 우점 되어 있었다. Proteobacteria는 하폐수 처리공정에서 유기물 농도가 높은 환경에서 주로 발견되며, 광합성세균은 이산화탄소 및 황화수소를 흡수 이용하며, 오염 및 악취의 방지 효과를 나타낸다고 알려져 있다. Gemmatimonadetes는 활성화된 우수처리장에서 발견되는 호기성균으로 일반슬러지에서는 0.3%정도 발견되었으나 복합유용미생물 우점 슬러지에서는 14.12%로 복합유용미생물 우점 활성슬러지 공정이 활성도가 높다고 판단할 수 있다. 복합유용미생물 우점 슬러지 퇴비와 일반 슬러지 퇴비의 다양성분석을 한 결과 퇴비화 숙성이 진행되면서 미생물이 단순화 되고 퇴비화에 주로 발현되는 미생물인 Bacteroidetes, Proteobacteria, Firmicutes등의 우점도가 높아지는 타 연구결과와 일치하였다. 특히 복합유용미생물에서 4.17% 우점 되어 있는 Actinobacteria는 고정된 질소를 공급하는 역할을 하고 퇴비가 숙성이 진행되면서 온도가 뜨거워질 때 활성도가 높아지는데 복합유용미생물 슬러지 퇴비가 일반슬러지 퇴비보다 부숙 온도가 높고, 높은 온도 유지기간도 길었기 때문으로 보인다.본 연구에서 개발한 BCL의 bacteria 군집을 종(species) 수준 분석하기 위해 시판퇴비인 PMP와 BMP와 비교한 결과 PMP와 BMP에서는 기타 (<1%)가 각각 49%, 48% 였지만 BCL퇴비는 기타 (<1%) 15%로 BCL퇴비가 다른 시판 퇴비보다 종 다양성은 떨어졌지만 시판퇴비보다 퇴비 내 미생물이 우점 되어 공생역할을 하는 것으로 나타났다.
80.
2015.11 서비스 종료(열람 제한)
최근 들어 축산업의 규모 확대, 혁신도시건설로 인한 인구이동의 결과 농촌지역 지자체의 냄새 관련 민원이 급증하는 추세이다. 축산냄새의 저감을 위해서는 몇 가지 동원 가능한 수단을 거론할 수 있으나 현재 우리나라의 축산농가 실정을 고려해 볼 때 가장 현실적인 방법은 미생물을 이용한 방법이라고 할 수 있다. 우리나라 양돈의 경우 유럽, 미국의 경우와 달리 한가족이 운영 가능한 소규모(1000천두)의 농장이 다수를 차지하고 있는데 이러한 영세한 규모에서 활용 가능한 냄새저감 방법으로는 미생물제재의 돈사바닥 살포를 거론할 수 있으며 실제 많은 농가에서 이를 활용하고 있다. 그러나 앞서 언급한 축산선진국들의 경우 환경개선을 목적으로 미생물을 이용하는 경우는 많지 않다. 본 고찰에서는 축산냄새저감을 목적으로 과거 선진국에서 이루어진 미생물 활용의 예를 거론하고 우리나라와 차이점이 무엇이며 또한 그 원인이 무엇인지 논의하였다. 아울러 축산냄새저감을 위해 장래에 수행이 필요한 연구를 제시하였다.
1 2 3 4 5