The present study presents an experiment in which online acronyms, formed from common fixed phrases or formulaic expressions, and in common usage in English medium computer-based communication, were presented to Korean university-level learners placed into either a control group or treatment group which was given instruction into the expansions and meanings of the acronyms. Their knowledge of the target vocabulary was measured using the Vocabulary Knowledge Scale (VKS) test in a pre-, post-, delayed post-test format. The pre-test results showed relatively little awareness or familiarity with the target online acronyms for either group. Repeated measures ANOVA analysis did not show differences between pre-test and immediate post-test scores for the control group, although the delayed post-test did show a significant improvement. The treatment group showed significant and robust gains in both immediate and delayed post-tests. Comparison between the groups wa s done by one-way ANOVA. This showed significant differences in gains between control and treatment groups, with a large effect, suggesting that brief explicit instruction sessions could result in large gains. Implications of the study findings for educators and learners are discussed.
This study explores the seismic performance of steel diaphragm walls in underground structures, a critical aspect of structural engineering. The study focuses on the effects of slab diaphragm flexibility, an often overlooked factor in seismic design. Traditional seismic designs often assume the slab acts as a rigid diaphragm, leading to inaccuracies in predicting how forces are distributed between the slab and walls during an earthquake. To address this, the authors model steel diaphragm walls using equivalent cross-sections and analyze shear forces in both rigid and semi-rigid diaphragm scenarios. Results show that semi-rigid diaphragms reduce the shear forces on the exterior walls while increasing them on the internal core, thereby affecting the overall stiffness of the structure. The study emphasizes the importance of considering diaphragm flexibility in seismic design to achieve more accurate predictions of structural behavior and improve construction efficiency.
A total of 225, 3 weeks old weaned pigs of the Landrace × Yorkshire × Duroc breeds with initial average body weight (BW) of 6.25±0.6 kg were randomly assigned to 3 different treatments based on their BW, with each having 5 replicates. Each replicate contained 15 pigs, resulting in 75 pigs per treatment group. The treatment included a basal diet (CON), CON + allicin and cinnamaldehyde mixture 500 ppm (ALI), CON + Bacillus-based probiotics 500 ppm (PRO) tested for 42 days in a 3-phase feeding program (0–14 as phase 1, days 15–28 as phase 2, and days 29–42 as phase 3). Result shows final BW (6.3%) and average daily gain (9.0%) in the overall phase were higher (p<0.05) in PRO compared with CON. At d 14, the level of Escherichia coli was lower (p<0.05) in ALI (12.0%) and PRO (13.2%) over CON. At days 28 (14.6%) and 42 (12.8%), the level of Escherichia coli was lower (p<0.05) in PRO compared with CON. The level of tumor necrosis factor-α was lower (p<0.05) in PRO over CON (15.0%). Superoxide dismutase (9.2%) and immunoglobulin A (19.4%) were higher (p<0.05) in PRO over CON. We concluded that dietary PRO at 500 ppm showed better performance in piglets by enhancing their growth performance and health.
With increasing globalization and the urgent need for sustainable energy solutions, electrochemical water splitting has emerged as a crucial technology for clean energy production. In this study, we report the successful synthesis of 0.1 % Fe-doped NiS2 via a one-step hydrothermal method. The incorporation of Fe into the NiS2 matrix significantly enhances its electrochemical performance, as evidenced by a remarkable reduction in overpotential, to 180 mV at a current density of 10 mA cm-2, compared to 250 mV for undoped NiS2. Additionally, the Fe-doped NiS2 exhibits a reduced Tafel slope, high double layer capacitance, and lower charge transfer resistance than undoped NiS2, indicating improved reaction kinetics for oxygen evolution. These improvements are attributed to the enhanced conductivity and catalytic activity imparted by Fe doping, which facilitates more efficient charge transfer and reaction processes at the electrode surface. The results suggest that Fe-doped NiS2 is a highly promising and robust candidate for applications in electrochemical energy conversion. Moreover, the doping strategy employed here offers a valuable approach for tailoring the properties of other metal sulfides and chalcogenides, paving the way for the design of next generation electrocatalysts that can drive large-scale energy conversion processes with minimal energy loss.
Scaling relations are fundamental tools for exploring the morphological properties of galaxies and understanding their formation and evolution. Typically, galaxies follow a scaling relation between mass and size, measured by effective radius. However, a compact class of galaxies exists as outliers from this relation, and the origin of these compact galaxies in the local universe remains unclear. In this study, we investigate the compact dwarf galaxy SDSS J134313.15+364457.5 (J1343+3644), which is the result of a merger. Our analysis reveals that J1343+3644 has a half-light radius of 482 pc, significantly smaller than typical galaxies with the same brightness (Mr = −19.17 mag). With a high star-formation rate (SFR) of 0.87 M⊙ year−1, J1343+3644 is expected to evolve into a compact elliptical galaxy in a few million years. J1343+3644 could, therefore, be a progenitor of a compact elliptical galaxy. The phenomenon happened in early universe, where compact galaxies were common.
Background/Aim: This study investigated the relationship between albumin-bilirubin (ALBI) grade and advanced liver fibrosis in patients with a history of gallstone disease and cholecystectomy, focusing on those diagnosed with metabolic dysfunctionassociated steatohepatitis (MASH) using the acMASH algorithm. Methods: Data from 566 subjects in the National Health and Nutrition Examination Survey 2017-2020 dataset were analyzed. MASH and advanced fibrosis (AF) were determined using acMASH and acFibroMASH algorithms, respectively. Liver stiffness measurement (LSM), ALBI grade, and other fibrosis indices were evaluated. Results: Of 566 subjects, 13 (2.3%) were diagnosed with MASH, and 65 (11.48%) had AF. MASH subjects showed significantly higher LSM values compared to non-MASH subjects (p=0.032). ALBI grade demonstrated weak positive correlations with LSM, FIB- 4, and acFibroMASH in non-MASH subjects. The AUROC for ALBI grade in identifying AF was 0.631 (95% CI 0.590-0.671). Multivariate analysis confirmed ALBI grade as an independent predictor of AF (odds ratio 0.193, 95% CI 0.1025-0.2837, p<0.001). Conclusions: ALBI grade shows potential as a non-invasive marker for advanced liver fibrosis in patients with a history of gallstone disease and cholecystectomy, particularly in those with MASH. Further studies with larger MASH cohorts are needed to validate these findings.
본 연구는 지난 10여년간 고려대학교 및 한국과학기술연구원(KIST)에서 AMS를 이용하여 측정된 우주선유발 동위원소 10 Be의 준비 및 측정 과정을 다룬 보고서이다. 총 2 4세트의 표준물질과 107개의 Blank시료가 분석되었으며, 2017년 이후 표준물질의 측정 재현성이 크게 향상되어 국제적인 주요 실험실의 결과와 비교할 만한 수준의 성과를 보였다. 그러나 Blank 값은 사용된 9 Be 캐리어의 종류 및 석영 추출 과정과 AMS 측정 세팅 등 실험 조건에 따라 영향 을 받는 것으로 나타났으며, 이는 잠재적인 오염원을 체계적으로 추적하고 관리할 필요성을 시사한다. 본 연구는 10 Be Background 값을 줄이는 것이 우주선유발 동위원소 연구의 범위를 넓히는 데 중요한 역할을 함을 강조한다. 낮은 Background 값은 상대적으로 최근에 형성된 지형이나 오랜 시간 매몰되어 방사성 핵종이 상당량 감소한, 저준위 10 Be 지형의 연대측정을 가능하게 한다. 향후 연구에서는 실험 과정을 개선하고 가중평균 계산법 등의 새로운 통계적 방법을 도입하여 측정 오차를 최소화하는 데 중점을 둘 예정이다. 본 연구는 다양한 시간적 및 공간적 규모에서 지구표면과학 연구를 발전시키기 위한 우주선유발 동위원소 분석의 기반을 제공한다.
중국 소수민족의 민속학은 성 역할과 민족 정체성 간의 관계에 대한 귀중한 통찰을 제공한다. 문화 보존과 혁신의 주요 참여자로서, 여성은 사회 변화 속에서도 소수민족 전통의 회복력을 유지하는 데 중요한 역할 을 한다. 본 연구는 소수민족 여성들을 중심으로, 의식, 전통 의복 및 예 술적 표현에서의 상징적 역할을 탐구한다. 역사적 문서 분석과 현장 조 사를 결합하여, 다양한 공동체의 전통 노래, 춤, 구술 역사를 질적 방법 으로 분석한다. 연구 결과에 따르면, 여성은 문화적 관행을 계승할 뿐만 아니라 전통적인 성 역할과 현대적 영향을 통합하여 문화적 적응과 결속 을 이끄는 혁신적인 역할을 수행한다. 이 연구는 소수민족 민속학 형성 에서 여성의 핵심적인 역할을 강조하며, 다양한 사회에서 문화 통합의 역동성에 대한 폭넓은 통찰을 제공한다.
This study explored the development direction of punk fashion through 3D digital fashion design by analyzing the expressive characteristics and inherent meanings of the punk fashion expressed in Vivienne Westwood’s creations. To this end, the concept underlying punk and its expressive characteristics were examined, and the eco-friendly expressive attributes of punk fashion were scrutinized through photos of Vivienne Westwood’s collections. The analysis focused on 10 seasonal collections showcased over the past five years, from the designer’s 2018 S/S to 2022 F/W collections. The results revealed that Westwood’s punk expression was characterized by traditionality, eco-friendliness, playfulness, resistance, and deconstruction. Traditionality appeared in the form of a harmonious redesign of classics to create new works, while eco-friendliness was manifested through the use of slogans and eco-friendly materials and methods. Playfulness conveyed positive messages through comedic situations or characters, and resistance emerged as a means of delivering messages for improving social issues. Finally, the deconstruction of punk was reflected as resistance, boldly destroying fashion structures to express dissatisfaction with society. Punk design in fashion is one of the avenues in which designers effectively express the messages that they want to communicate to society. This study is significant, as it provides foundational data for exploring punk characteristic design strategies to be used in future fashion. The scope of application for 3D virtual clothing programs is expected to expand in the fashion industry, and continuous research on digital fashion design is anticipated.
High-entropy alloys (HEAs) represent a revolutionary class of materials characterized by their multi-principal element compositions and exceptional mechanical properties. Powder metallurgy, a versatile and cost-effective manufacturing process, offers significant advantages for the development of HEAs, including precise control over their composition, microstructure, and mechanical properties. This review explores innovative approaches integrating powder metallurgy techniques in the synthesis and optimization of HEAs. Key advances in powder production, sintering methods, and additive manufacturing are examined, highlighting their roles in improving the performance, advancement, and applicability of HEAs. The review also discusses the mechanical properties, potential industrial applications, and future trends in the field, providing a comprehensive overview of the current state and future prospects of HEA development using powder metallurgy.
Cherry tomato (Solanum lycopersicum L,. var. cerasiforme Mill.) is small fruits with a bright red color resembling a cherry and having an excellent taste, sweet and juicy ambience. So far, no cherry tomato variety was registered in Ethiopia. Consequently, six genotypes were imported from National Institute of Horticulture and Herbal Sciences (NIHHS), Rural Development Administration (RDA) Republic of Korea, and field experiment was conducted in RCBD with three replications at six Ethiopian testing sites, with irrigation, during off-seasons of 2021 and 2022 to identify high yielding, well adapted and good quality varieties. The overall analysis of variance across locations and years showed non-significant difference among the genotypes for marketable and total yields. But separate analysis for each site has revealed significant differences among genotypes at Melkassa, Koka, Adami- Tulu and Fogera, unlike that of Kulumsa and Woramit. There were significant differences (P < 0.05) among these genotypes for fruit numbers per plant, average fruit weight, fruits per cluster, plant height, skin thickness, juice volume and total soluble solid. Wonhong No.3 gave higher marketable (24.49 t/ha) and total (26.19 t/ha) yields, and generally Wonhong Nos.3 and 5 had higher yields and good qualities across these tested locations and years. Hence, Wonhong No.3 (designated as Jorgie-1) was registered for its higher yield, non-cracking, good TSS and color, while Wonhong No.5 (renamed as Jorgie-2) was preferred for its smaller fruit size, reasonable yield and quality (TSS, color, non-cracking). Hence, both varieties were officially registered in 2023 season for commercial production in different agro-ecologies of Ethiopia, and they are believed to add more economic and nutritional values for the tomato producers and the consumers. They can also support the intensification of tomato cultivation in peri-urban and urban agriculture, where demands and thus government focus are increasingly growing.
Onion (Allium cepa L.) is one of the most consumed vegetables in Paraguay, playing a crucial role in the daily diet of the population. Onion production is mainly concentrated in the Eastern Region, especially in the departments of Caaguazú, Paraguarí, and Itapúa. However, despite its importance, Paraguay continues to rely on onion imports from Argentina and Brazil to meet the growing domestic demand. This dependence is concerning, as national yields are approximately 40% lower than those obtained in these neighboring countries. There are several problems affecting onion production in Paraguay. Among them, the most important problem is the lack of local varieties adapted to the country’s climate conditions. Another problem is the absence of adequate and well-defined agricultural practices. This study aims to review the agroclimatic conditions of the main production areas, as well as the production technologies currently employed and local research efforts. A significant aspect of the research is the KOPIA-IPTA (Paraguayan Institute of Agricultural Technology) cooperation project, which sought to promote innovation in onion cultivation by transferring technologies and technical knowledge. Trials of different onion varieties were conducted at three IPTA regional institute of Caacupé, Choré, and San Juan Bautista across three planting seasons. Additionally, demonstration fields in Cordillera, Paraguarí, Misiones, and San Pedro showed an increase in gross income between 145% and 438% compared to the national average. This project has demonstrated that developing appropriate technologies and farmer training are essential to improving onion production and quality in Paraguay. Furthermore, the prospect emphasizes the need for the implementation of an internal program where the main focus is the development o f appropriate technologies and their transfer to farmers to ensure sustainable and high- quality local production.
This study was conducted in the San Pedro Department to determine the impact of different soil management practices on sesame productivity. Different tillage methods (conventional deep tillage, minimum tillage, and no-tillage), crop rotations (monoculture, double, and triple rotation), various combinations of green manure, and appropriate doses of chemical fertilizers were studied. The results revealed that the no-tillage method combined with crop rotation (corn-cotton-sesame) and fertilization had the highest productivity of 1,548 kg/ha. In contrast, the conventional deep tillage method without fertilization showed the lowest productivity with 614 kg/ha. Incorporation of summer green manures (Mucuna pruriens) in minimum tillage methods with fertilization significantly improved productivity (1,010 kg/ha) in comparison with the same tillage method and fertilization but without Mucuna (720 kg/ha), which highlights the synergistic effects of combining green manures with chemical fertilizers. The treatment of winter green manures consisting of black oat + white lupine and black oat + radish has also significantly improved the productivity of sesame with 904 and 900 kg/ha, respectively, compared to the non-use of winter green manure and the use of chia, which had productivities of 695 and 298 kg/ha, respectively. The best chemical fertilization doses of nitrogen (urea 45% N), phosphorus (46% P2O5), and potassium (60% K2O) were determined through tests with increasing doses of each nutrient, maintaining 40 kg/ha as the base for the other two. The highest productivity was obtained with N, P, and K levels of 70 kg/ha each, resulting in productivities of 1,421, 1,522, and 1,486 kg/ha. However, the maximum profit compared to the input is obtained with doses of 50 kg/ha for N and 60 kg/ha for P and K, giving a productivity of 1,390, 1,510, and 1,421 kg/ha, respectively.
This article aims to compile key information to describe the current production situation of potatoes f or c onsumption and v irus- free s eed potatoes i n Paraguay, and to identify the main challenges for developing a self-sufficient production system. The study describes the climatic conditions of the production of potatoes and the national production and distribution situation, highlighting the dependence on imports for more than 90% of market demand. It analyzed the issues surrounding the production and supply of virus-free seed potatoes, which depend on imports from Argentina, averaging 799.9 tons per year. Additionally, this study collects information on virus detection in local potatoes and the risks associated with introducing viruses through imported seeds. To address these issues, the Korea Partnership for Innovation of Agriculture (KOPIA) and the Paraguayan Institute of Agricultural Technology (IPTA) cooperation project promoted the production of virus-free seed potatoes for their distribution to smallholder farmers across various country regions, strengthening the foundations for future virus-free seed potato production and distribution systems. Improving self-sufficiency in potato production in Paraguay requires an integrated strategy that includes analyzing suitable regions for seed potato production, implementing advanced technologies, and strengthening farmers’ technical capacity. Establishing virus-free seed potato production areas and securing governmental and legal support are crucial steps toward achieving sustainable seed potato production and reducing dependence on imports.
Humic acids (HA), with their irregular polymeric structures and largely existing in grassland, present challenges in quality control due to significant variations in biological activities depending on extraction sources. To address this, we explored industrial byproducts as potential alternatives mimicking HA-like bioactivities. This study evaluates sulfite lignin, a byproduct of the pulp industry, as an eco-friendly biostimulant for enhancing plant growth and stress tolerance. Sulfite lignin demonstrated HA-like bioactivities, promoting seed germination and salt stress tolerance in Arabidopsis thaliana. Germination assays revealed that sulfite lignin significantly improved radicle and cotyledon emergence, particularly at low concentrations (8.6 mg L⁻¹), outperforming HA and kraft lignin. Additionally, under salt stress conditions, sulfite lignin-treated plants exhibited healthier phenotypes and maintained higher chlorophyll content compared to control treatments, similar to HA and kraft lignin. The findings highlight sulfite lignin as a promising, sustainable, and cost-effective biofertilizer, effectively replicating HA's biological functions while leveraging industrial byproducts.
Si-based anodes are promising alternatives to graphite owing to their high capacities. However, their practical application is hindered by severe volume expansion during cycling. Herein, we propose employing a carbon support to address this challenge and utilize Si-based anode materials for lithium-ion batteries (LIBs). Specifically, carbon supports with various pore structures were prepared through KOH and NaOH activation of the pitch. In addition, Si was deposited into the carbon support pores via SiH4 chemical vapor deposition (CVD), and to enhance the conductivity and mechanical stability, a carbon coating was applied via CH4 CVD. The electrochemical performance of the C/Si/C composites was assessed, providing insights into their capacity retention rates, cycling stability, rate capability, and lithium-ion diffusion coefficients. Notably, the macrostructure of the carbon support differed significantly depending on the activation agent used. More importantly, the macrostructure of the carbon support significantly affected the Si deposition behavior and enhanced the stability by mitigating the volume expansion of the Si particles. This study elucidated the crucial role of the macrostructure of carbon supports in optimizing Si-based anode materials for LIBs, providing valuable guidance for the design and development of high-performance energy-storage systems.
In recent years, the search on fabrication of highly efficient, stable, and cost-effective alternative to Pt for the hydrogen evolution reaction (HER) has led to the development of new catalysts. In this study, we investigated the electrocatalytic HER activity of the Toray carbon substrate by creating defect sites in its graphitic layer through ultrasonication and anodization process. A series of Toray carbon substrates with active sites are prepared by modifying its surface through ultrasonication, anodization, and ultrasonication followed by anodization procedures at different time periods. The anodization process significantly enhances the surface wettability, consequently resulting in a substantial increase in proton flux at the reaction sites. As an implication, the overpotential for HER is notably reduced for the Toray carbon (TC-3U-10A), subjected to 3 min of ultrasonification followed by 10 min of anodization, which exhibits a significantly lower Tafel slope value of 60 mV/dec. Furthermore, the reactivity of the anodized surface for HER is significantly elevated, especially at higher concentrations of sulfuric acid, owing to the enhanced wettability of the substrate. The lowest Tafel slope value recorded in this study stands at 60 mV/dec underscoring the substantial improvements achieved in catalytic efficiency of the defect-rich carbon materials. These findings hold promise for the advancement of electrocatalytic applications of carbon materials and may have significant implications for various technological and industrial processes.
Silicon carbide (β-SiC) was synthesized through an improved sol–gel method, then Ni/SiC catalysts were prepared using a hydrothermal method. The catalysts were characterized using TEM, H2- TPR, CO2- TPD and N2- TPD, etc. The results showed that the synthesized β-SiC had a large specific surface area, promoting the dispersion of Ni species and thus exposing more active sites. The interaction between Ni species and β-SiC contributed significantly to catalytic performance. Furthermore, the strong alkalinity of catalyst could adjust the bond energy of the active metal and N (M–N), which were conducive to desorption of the recombinant N2 from the metal surface, promoting to ammonia decomposition. Among the Ni/SiC catalysts, 30Ni/SiC-700 synthesized with the Ni loading of 30 wt% and calcination temperature of 700 °C, exhibited the optimal ammonia conversion rate of 93.4% at 600 °C under the space speed of 30,000 mL∙gcat −1∙h−1, and demonstrated a long-term stability, suggesting a very promising catalyst in ammonia decomposition.