검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 822

        81.
        2023.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The numeric-based Highway Pavement Management System (HPMS), along with an advanced three-dimensional pavement condition monitoring profiler vehicle (3DPM), in South Korea has presented remarkable advancements in pavement management since the early 2000. Based on these results, visual distress on pavement surfaces can be easily detected and analyzed. Additionally, the entire expressway pavement surface conditions in South Korea can be easily monitored using the current graphical user interface-based advanced information graphic (AIG) approach. Therefore, a critically negative pavement section can be detected and managed more easily and efficiently. However, the actual mechanical performance of the selected pavement layer still needs to be investigated in a more thorough manner not only to provide more accurate pavement performance results but also to verify the feasibility of the current 3DPM and AIG approaches. In this study, the low-temperature performance of the selected asphalt pavement layer section was evaluated to further verify and strengthen the feasibility of the current 3DPM and AIG approaches developed by the Korea Expressway Corporation. METHODS : Based on 3DPM and AIG approach, the positive and negative-riding-quality road sections were selected, respectively. The asphalt material cores were extracted from each section then bending beam rheometer mixture creep test was performed to measure their low-temperature properties. Based on the experimental results, thermal stress results were computed and visually compared. RESULTS : As expected, the asphalt material from the negative driving performance section presented a poorer low-temperature cracking resistance than that from the positive driving performance section. CONCLUSIONS : Current 3DPM equipment can successfully evaluate expressway surface conditions and the corresponding material performance quality. However, more extensive experimental studies are recommended to verify and strengthen the findings of this study
        4,000원
        82.
        2023.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Porous ceramics are used in various industrial applications based on their physical properties, including isolation, storage, and thermal barrier properties. However, traditional manufacturing environments require additional steps to control artificial pores and limit deformities, because they rely on limited molding methods. To overcome this drawback, many studies have recently focused on fabricating porous structures using additive manufacturing techniques. In particular, the binder jet technology enables high porosity and various types of designs, and avoids the limitations of existing manufacturing processes. In this study, we investigated process optimization for manufacturing porous ceramic filters using the binder jet technology. In binder jet technology, the flowability of the powder used as the base material is an important factor, as well as compatibility with the binder in the process and for the final print. Flow agents and secondary binders were used to optimize the flowability and compatibility of the powders. In addition, the effects of the amount of added glass frit, and changes in sintering temperature on the microstructure, porosity and mechanical properties of the final printed product were investigated.
        4,000원
        83.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: This study attempted a comparative analysis of three splint fabrication methods currently used in clinical fields. Traditional Orthotic Fabrication Method Utilizing Thermoplastic Resin, the Methodology for creating assistive devices using 3D scanner, commercial CAD software, and 3D printing technology, and the Fabrication Method of Arm Splint Based on XR (eXtended Reality) Algorithm. Objectives: The study recruited 12 undergraduate students majoring in physical therapy and occupational therapy who had sufficient knowledge of splints, with an equal gender distribution. The study randomized the participants and conducted the experiment and overall process using a stratified approach. Design: Clinical applied technology experiment Methods: The study used QUEST 2.0 (Quebec User Evaluation of Satisfaction with assistive Technology ver. 2.0) to survey standardization, weight, ease of use, safety, durability, usability, effectiveness, and patient satisfaction, and statistically analyzed all results as quantitative indicators. Results: The score of QUEST 2.0 showed different aspects in some items, and it is difficult to say that certain technologies are superior overall. Conclusion: The study attempted an intuitive interpretation of the results. Overall, it was concluded that the XR method, which allows for easy and fast fabrication, is likely to be more readily accepted in future clinical practice.
        4,000원
        84.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, it has been applied and used in various fields using 3D printing. Since it is closely connected to our lives, the mechanical properties of the output are actively studied. Therefore, in this study, tensile specimens were manufactured using the FDM lamination method using PLA materials, and the changes in tensile properties were compared and evaluated. First, 120 tensile specimens were manufactured using the spacing angle and lamination density of the lamination angle as control factors. After that, a tensile test was conducted at the same tensile speed of 5mm/s to compare and evaluate the tensile strength and elastic modulus. As a result, it was found that the tensile strength and elastic modulus increased linearly with density than the lamination angle. In addition, when the laminating angle was 0°, the tensile strength and elastic modulus were the largest. When the laminating angle was 108°, the lowest tensile strength and elastic modulus were confirmed.
        4,000원
        85.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This research was conducted to reduce the defect rate caused by nozzle clogging of printing heads used in binder jet 3D printers. The binder jet 3D printing technology may adhere to the printing head nozzle by dispersing powder due to mechanical operation such as transferring the printing head and supplying powder, and may cause nozzle clogging by natural curing at the nozzle end depending on the type of binder used. To solve this problem, this study created a cleaning module exclusively for printing heads to check whether the durability of printing heads is improved through analysis of printing results before and after using the cleaning module. To this end, this research used a thermal bubble jet printing head, and the used powder was studied using gypsum powder.
        4,000원
        86.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문에서는 웹툰 캐릭터 영상에 대해서 심층학습에 기반한 3D 안면 재구성 기술을 제안한다. 본 연구에서 제안하는 방법은 기본 사항 모듈과 상세 사항 모듈로 구성된다. 입력 받은 웹툰 캐릭터 영상에 대해서 기본 사항 모듈의 요소인 Albedo 모듈을 적용해서 안면에 들어오는 빛의 양을 계산하여 Albedo 맵을 생성한다. 그 리고 기본 사항 모듈의 다른 구성 요소인 FLAME 모듈에서는 입력 영상에 대한 기본적인 3D 안면 형태를 생 성한다. 이와 동시에 상세사항 모듈을 적용해서 실제 사람과 다르게 이목구비가 변형된 웹툰 캐릭터 영상의 표정이나 얼굴 깊이와 같은 특징을 살리는 세부사항을 추출한다. 계산한 세부사항들을 토대로 세부사항 맵을 생성하여 앞서 FLAME 모듈에서 생성된 3D 안면 형태와 결합하여 세부사항 안면 형태를 생성한다. 그 후 Albedo 모듈에서 생성된 Albedo 맵까지 적용하면 최종적으로 웹툰 캐릭터 영상에 대한 3D 안면 재구성이 완 료된다. 본 연구에서는 웹툰 캐릭터뿐만 아니라 안면이 스타일화된 애니메이 션 캐릭터에 대해서도 결과를 생성하고, 이를 기존 연구와 비교하여 그 우수성을 입증한다.
        4,000원
        87.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        VR 및 AR은 대중들이 접근하기 어려운 기술이 아닌, 개인용 스마트 폰 하나로 체험 및 활용 할 수 있는 시 대가 되었다. 최근 이런 개인용 스마트 폰의 다양한 센서를 활용한 AR 콘텐츠가 개발되고 서비스 되고 있다. AR 콘텐츠의 수요가 커지면서Software교육의 수요도 커지게 되었다. 하지만, 비전공자들도 배우기 쉬운 Python 언어를 중심으로 SW 교육이 활발해졌음에도, 아직까지 AR 콘텐츠 개발에서는 Python을 적극적으로 사용할 수 없다. AR 콘텐츠는 기술 분야 뿐 아니라 인터렉티브 아트 분야에서도 활발하게 사용되고 있다. 최근 인터 렉티브 아티스트들은 Python을 이용하여 인공지능을 활용한 작품을 개발 및 전시하고 있다. Python을 통한 SW 교육은 SW 분야의 취업에만 필요한 것이 아니라 아트 분야에서도 필요한 교육이 되었다. 본 논문에서는 AR 콘텐츠 개발 교육을 위한 Python과 Unity 3D Engine을 이용한 네트워크 기반 AR 프레임 워크를 제안한다. 제 안한 AR 프레임 워크는 Web 기반 브라우저에서 개인용 스마트 폰의 카메라에 접근하여 카메라 정보를 Main Server에 전송하고 Python에서 Mark를 분석한다. Mark 정보에 맞춰 Unity 3D Engine에서 3D 오브젝트를 렌더 링하고, 카메라 정보화 합성 후, MJPEG 스트리밍으로 개인용 스마트 폰 화면에 렌더링 된다. 본 논문에서 제 안한 AR 프레임 워크는 SW 교육 플랫폼과 비대면 교육 플랫폼의 요구사항을 반영하며, 인터렉티브 아티스트 들의 다양한 도전에 필요한 기술적 제한을 낮춰 줄 것으로 기대한다.
        4,000원
        88.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Aluminum alloys are widely utilized in diverse industries, such as automobiles, aerospace, and architecture, owing to their high specific strength and resistance to oxidation. However, to meet the increasing demands of the industry, it is necessary to design new aluminum alloys with excellent properties. Thus, a new method is required to efficiently test additively manufactured aluminum alloys with various compositions within a short period during the alloy design process. In this study, a combinatory approach using a direct energy deposition system for metal 3D printing process with a dual feeder was employed. Two types of aluminum alloy powders, namely Al6061 and Al-12Cu, were utilized for the combinatory test conducted through 3D printing. Twelve types of Al-Si-Cu-Mg alloys were manufactured during this combinatory test, and the relationship between their microstructures and properties was investigated.
        4,000원
        89.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Metal additive manufacturing (AM) has transformed conventional manufacturing processes by offering unprecedented opportunities for design innovation, reduced lead times, and cost-effective production. Aluminum alloy, a material used in metal 3D printing, is a representative lightweight structural material known for its high specific strength and corrosion resistance. Consequently, there is an increasing demand for 3D printed aluminum alloy components across industries, including aerospace, transportation, and consumer goods. To meet this demand, research on alloys and process conditions that satisfy the specific requirement of each industry is necessary. However, 3D printing processes exhibit different behaviors of alloy elements owing to rapid thermal dynamics, making it challenging to predict the microstructure and properties. In this study, we gathered published data on the relationship between alloy composition, processing conditions, and properties. Furthermore, we conducted a sensitivity analysis on the effects of the process variables on the density and hardness of aluminum alloys used in additive manufacturing.
        4,000원
        90.
        2023.05 구독 인증기관·개인회원 무료
        A person who performs or plans to conduct a physical protection inspection as stipulated by the law, the act on physical protection and radiological emergency, should obtain an inspector’s ID card certified and authorized by Nuclear Safety and Security Commission Order No.137 (referred to as Order 137). In addition, according to Order 137, KINAC has been operating some training courses for those with the inspector’s ID card or intending to acquire it. Also, strenuous efforts have been put to incrementally elevate their inspection related expertise. Since Republic of Korea has to import uranium enriched less than 20% in order to manufacture fuels of nuclear reactors in domestic and abroad, the physical protection for categorization III nuclear material in transit is significantly important along with an increase in transport. The expertise of inspectors should be constantly needed to strengthen as the increase in transport leads to an increase in inspection of nuclear material in transit. We have suggested a special way to improve the inspector’s capacities through Virtual Reality technology (VR). A 3-Dimensional virtual space was designed and developed using a 3-axis simulator and VR equipment for practical training. HP’s Reverb G2 product, which was developed in collaboration with VALVE Corporation and MicroSoft, was used as VR equipment, and the 3-axis motion simulator was developed by M-line STUDIO corp. in Korea for the purpose of realizing virtual reality. The training scenarios of transport inspection consist of three parts: preparation at the shipping point, transport in route including stops and handover at the receiving point. At the departure point, scenario of the transport preparation is composed with the contents of checking the transport-related documents which should be carried by shipper and/or carrier during transport and confirming who the shipper and/or carrier is. Second, scenario is designed for inspector to experience how carrier and/or shipper protect the nuclear material during transport or stops for rests or contingency and how they communicate with each other during transport. Lastly, scenario is developed focusing on key check items during handover of responsibilities to the facility operator at the destination. Those training scenarios can be adopted to strengthen the capabilities of those with inspector’s ID card of physical protection in accordance with Order 137 and to help new inspectors acquire inspectionrelated expertise. In addition, they can be used for domestic education to promote understanding of nuclear security, or may be used for education for people overseas for the purpose of export of nuclear facilities.
        94.
        2023.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        3D printing is widely used in product development and prototype manufacturing, and is expected to become universal across various industries with the development of 3D printing-related technologies. However, parts made by Fused Deposition Modeling(FDM) 3D printing using the commonly used stacking manufacturing process, show low tensile strength and hardness. The decreased mechanical properties of these parts limit their use as structural elements. In this study, we aim to investigate the relationship between ultrasonic treatment of PLA parts produced by FDM 3D printing and their mechanical properties. Specifically, we analyze the effects of ultrasonic annealing on the mechanical properties of PLA parts using the tensile test specimen.
        4,000원
        1 2 3 4 5