In this study, a shape design and an analysis considering structural stability were investigated to develop an icosahedron-based hemispherical modular dome. To design this modular dome, a program that can perform icosahedron shape modeling, modularization of joint connection members, and the analysis of structural stability was developed. Furthermore, based on the adopted numerical model, the eigen buckling mode, unstable behavior characteristics according to load vector, and the critical buckling load of the modular dome under uniformly distributed load and concentrated load were analyzed, and the resistance capacities of the structure according to different load vectors were compared. The analysis results for the modular dome suggest that the developed program can perform joint modeling for shape design as well as modular member design, and adequately expressed the nonlinear behaviors of structured according to load conditions. The critical buckling load results also correctly reflected the characteristics of the load conditions. The uniformly distributed load was more advantageous to the structural stability than concentrated load.
PURPOSES: The purpose of this study is to verify traffic accident injury severity factors for elderly drivers and the relative relationship of these factors.
METHODS: To verify the complicated relationship among traffic accident injury severity factors, this study employed a structural equation model (SEM). To develop the SEM structure, only the severity of human injuries was considered; moreover, the observed variables were selected through confirmatory factor analysis (CFA). The number of fatalities, serious injuries, moderate injuries, and minor injuries were selected for observed variables of severity. For latent variables, the accident situation, environment, and vehicle and driver factors were respectively defined. Seven observed variables were selected among the latent variables.
RESULTS: This study showed that the vehicle and driver factor was the most influential factor for accident severity among the latent factors. For the observed variable, the type of vehicle, type of accident, and status of day or night for each latent variable were the most relative observed variables for the accident severity factor. To verify the validity of the SEM, several model fitting methods, including , GFI, AGFI, CFI, and others, were applied, and the model produced meaningful results.
CONCLUSIONS: Based on an analysis of results of traffic accident injury severity for elderly drivers, the vehicle and driver factor was the most influential one for injury severity. Therefore, education tailored to elderly drivers is needed to improve driving behavior of elderly driver.
This study investigates the property of crack growth at the specimen of structural steel. The behaviour of fracture mechanics on the specimens with only a center crack and with holes existed symmetrically near a center crack is studied. The tensile load is applied on the specimens with these conditions. Stress intensity factors are obtained by the basis of these experimental values and these values are verified with the structural analysis of finite element method. As the length of center crack becomes larger in case of the specimen with holes existed symmetrically near a center crack, the values of deformation energy and stress become larger. On the contrary, the values of deformation energy and stress become smaller as the length of center crack becomes larger in case of the specimen with only a center crack. By examining the stress intensity factor in this study, this value becomes rather smaller although the length of center crack becomes larger. There is the position where crack is likely to happen or weak part at the mechanical structure or the machine. As the holes are punctured and arranged adequately near this crack or weak part by using the result of this study, the fracture due to it can be prevented.
Structural system involves random conditions such as material property, geometric parameters and applied loads. This is caused by either measurement inaccuracy or system complexity and must be designed to withstand the uncertainties, Random structures may be modelled by using the finite element method using Monte Carlo simulation. It can be applied easily to any structural system with random parameters. The aim of this paper is to find the shape optimal design for the cantilever beam with random input variables to the height and response parameters to the displacement and stresses. The probabilistic design is carried out using ANSYS probabilistic design module in a commercial application software and then the optimal design is sequentially solved. An efficient and practical shape optimal design evaluation method is proposed for the design of the cantilever beam shape. The numerical results are obtained where total volume of the beam, stresses and displacements in the beam treated as constraints
The deep see riser is often exposed to harsh ocean environment which may cause riser failure. If the riser fails, it may cause serious economical losses as well as environmental problems. Thus, monitoring the integrity of the rider for preventing sudden failure is very important. In this study, the structural behavior monitoring systems installed for the deep sea riser are examined, and, using the estimated behavior, the applicability of the structural integrity evaluation methods is examined via numerical analysis.
Prestressed concrete PSC girders are efficient in terms of structural performance, economical efficiency and constructability. However, PSC girders have overtuning risk in construction in which extra work needs to protect. The low center of gravity girder (MPC girder) is more stable and easier to construct than the traditional PSC girder, which has tweaked end point and mono-tendon anchor. In this study, we evaluated the structural advantages in the deflection (slope) and stress on the link slab by using the finite element method. As a result, it was found that the reinforcement in the link slab for the bridge continuation may be reduced because of less displacement.
Generally, the Load of upper structures is transferred to concrete foundations through columns supporting them. So, the anchor connection system is usually adopted in order to connect the columns and the concrete foundations. To apply this system, the column-foundation connections need to be designed with enough stiffness. This study was experimentally conducted to effectively improve the structural detail of circular CFT column-foundation connections, to which axial and lateral load simultaneously apply. For this study, the test specimen with a general anchor and an anchor frame, and the specimens with the high-tension bolt and inner reinforcement were fabricated. In addition, double base plates were adopted to have the enough stiffness of connections. The behavioral characteristics and the failure mode were investigated and compared, and the improvement of structural detail of circular CFT column-foundation connections was suggested.
This paper deals with the strengthening effect of reinforced concrete beams strengthened with carbon fiber sheets (CFSs). Fifteen strengthened reinforced concrete (RC) beams were experimentally evaluated to determine improvements in structural performance. Test parameters in this experimental study are strengthening ratios and strengthening methods of CFSs (I-S, I-W, U-S, U-W type). RC beams strengthened with CFSs were tested under sustaining load. Considering strengthening ratios and strengthening methods of carbon fiber sheets, structural performance and failure mode of test specimens were evaluated. The results show that maximum capacity of beams strengthened with CFSs is about 28.8% in I-S type, 20.5% in I-W type, 26.0% in U-S type, 28.7% in U-W type higher than that of control beam.
SAFE damper is a hybrid damper which is comprised of a friction damper and a metallic damper. These two dampers combine to resist external energy in stages. Under minor earthquake loads, the friction damper operates alone. However, the friction damper and metallic damper dissipate the energy together when a severe earthquake occurs. In comparison with other methods for seismic retrofitting, the SAFE damper has many advantages. The SAFE damper doesn’t cause damage to façade of the building, and the construction period can be reduced when retrofitting. This paper describes experiments evaluating the structural performance of the SAFE damper. From the results, it was found that the structural performance of a conventional RC bare frame can be significantly improved by the installation of the SAFE damper.
This paper presents the structural model verification process of whole wind turbine blade including blade model which proposed in Part1 paper. The National Renewable Energy Laboratory (NREL) Phase VI wind turbine which the wind tunnel and structural test data has publicly available is used for the study. In the Part1 of this paper, the processes of structural model development and verification process of blade only are introduced. The whole wind turbine composed by blade, rotor, nacelle and tower. Even though NREL has reported the measured values, the material properties of blade and machinery parts are not clear but should be tested. Compared with the other parts, the tower which made by steel pipe is rather simple. Since it does not need any considerations. By the help of simple eigen-value analysis, the accuracy of structural stiffness and mass value of whole wind turbine system was verified by comparing with NREL's reported value. NREL has reported the natural frequency of blade, whole turbine, turbine without blade and tower only models. According to the comparative studies, the proposed material and mass properties are within acceptable range, but need to be discussing in future studies, because our material properties of blade does not match with NREL's measured values.
In this study, structural stability of large diameter high density polyethylene (HDPE) pipe during installation was numerically investigated in order to investigate the effect of concrete collar dimension, water depth and tension (pulling force). From the numerical simulation results, the total stress of HDPE pipe with designed concrete collar was within 2.5%, so the total weight of concrete collar for sinking of HDPE is important rather than concrete collar dimension. Furthermore, the tension area for possible installation is decreased as the air filling rate is increased. Therefore, it is important to calculate the reasonable tension range before actual installation for safe installation of HDPE pipe.
본 연구에서는 구조용강 시험편 내의 크랙의 성장특성을 주제로 하여 중앙크랙만이 존재하는 시험편과 중앙 크랙의 주변에 대칭으로 구멍들이 존재하는 시험편에 대한 파괴역학적 거동을 규명하고자 하였다. 구조용강으로 만들어진 시험편 내에 두 가지의 조건들을 적용하여 인장실험을 수행하였으며, 이를 통하여 시험편의 응력, Strain energy와 변형량에 대하여 해석하였다. 그리고 이러한 실험값들을 바탕으로 하여 응력확대계수를 구하였으며, 구해진 실험값들의 검증을 위하여 ANSYS 유한요소 해석 프로그램을 사용하여 시뮬레이션 해석을 수행하였다.
A Korean-designed cruiser class sailing yacht, based on the form of traditional yachts, has been developed. In this paper, structural design procedures for the yacht are studied. The scantling of structural members and loads is carried out based on the guidelines suggested by Australian Standard 4132-1993, the American Bureau of Shipping (ABS) and the International Organization for Standardization (ISO). Patran/Nastran finite element analysis is performed on models of the trial sailing boat, and from these results, the structural strength of the ship’s hull is verified.
The purpose of this study is to analyze the structural stability of pavement due to water infiltration at the road with infiltration trench as using the FEM(finite element analysis). Five cases for FEM is divided considering the amount of rainfall and rain duration time. The results of FEM show that the more rainfall in a short period time is faster the change of moisture content. Also, it is the proportional relationship between and changing area of moisture content of more than 40% due to rainfall. Case 3 and 4 are necessary to check the installation of infiltration trench because of moisture content of more than 40%, recovery time of initial moisture content, and changing area of more than 40%. Case 1,2, and 5 have no a significant effect on road pavement structure due to lower moisture content and shorter duration time of higher moisture content.
In recent years, technology has been developed the way the volume of the portable communication device is reduced but its performance is maintained. The COF(Chip On Film) packaging method is used due to the densification of the lead pitch, especially for the display driver IC. During COF packaging, lead break and film detachment could occur by the high bonding temperature and pressure, and possibility for lead interference can emerge by deformation of leads. In this study, a new double-column arrangement of leads is considered to increase lead density further than the existing zigzag arrangement of leads, and nonlinear structural analysis was carried out to examine whether the interference can occur. The results showed that stress and deformation of the corner region appear relatively higher than those of central region, and interference did not occur by the lead strain for the double-column arrangement of leads with pitch of 25μm. Therefore, double-column lead arrangement can improve lead density by about 176% compared to the zigzag lead arrangement
In this study, we evaluated the chemical and physical properties of structural steel, which is the most basic material for steel structures and reinforcement concrete structures in modern period. We theorized the technical data for the research of technical history of modern heritage structures by analyzing the product system and its quality control of structural steel used in modern historical heritages. The results of this study are as follow; first, the rounded bars were used in most of modern heritage structures. But in the case of Waegwan railroad bridge, the deformed bars were used in spit of not using in Japan after the great earthquake of Kantou. Second, the structural steel was good in terms of quality control, but It has brittle properties because it was not manufactured by heat treatment process.
In this study, Intersecting Tensegrity System that is integrated solid compression members with tension members was presented. This system is set up by connecting upper and lower compression members of pyramid shape with exterior tension members. In this system, the solid compression members are intersected each other and connected by a tension member in the center. This system is a variation of Tensegrity system, has a improved feature that the system is able to induce prestresses in all of tension members easily by adjusting the distance of a tension member in the center.
The proposed system was studied by modeling, and the structural behavior of the system was investigated by mechanical analysis of the model. Furthermore, the features of the structural behavior variations was investigated when the composition elements(total height, size of surface, intersection length, etc.) are changed variously. It was also showed that the system is able to be used as a temporary space structure system with a membrane roof of inverse conical shape.