Acrylic resin(ACR) was blended with a curing agent, hexamethoxymethylmela-mine(HMMM), in which blending ratio was 70:30. The curing behavior was examined using Rheovibron. Cross-linking reaction started at 170℃ in 2 min of reaction and curing was completed in 10 min. It was found that the extent of cross-linking increased with the content of acetoacetoxyethyl methacrylate monomer in the ACR.
Naphthothiazolo carbocyanine is of industrial importance as red-sensitizing dye in the spectral sensitization of emulsion microcrystals in negative film-making. In this study, red-sensitizing dye was prepared by the reaction of 2-methyl-3-sulfopropyl-4,5-naphthothiazolium(inner salt) with triethyl orthoacetate in the presence of triethylamine. The product was identified by using various analytical tools such as Elemental analyzer, IR spectrophotometer, UV-Vis spectrophotometer, Mass spectrometer, 1H-NMR spectrometer, TGA and DSC. The maximum absorption peak in methanol solvent was 573nm. Therefore, it was concluded that naphthothiazolo carbocyanine dye can be used as red0sensitizing dye for the spectral sensitization of photographic emulsion.
Alkyl polyglucosides were synthesized by solvent-free glycosidation using ultrasonic emulsification. We examined glycosidation conditions of fatty alcohol with glucose hydrate and anhydrous glucose in the presence of p-toluenesulfonic acid. Glucose was emulsified in a molar excess of fatty alcohol for 20 minutes with a ultra-sonicator at room temperature and converted in a stirred reactor to more than 95% polyglucoside within 2.5~3.5 hr under 20~30 mmHg at 110℃ with a three-fold molar ratio of fatty alcohol to glucose in the presence of 1mol% p-toluenesulfonic acid. It was possible to obtain a polyglucoside mixture of HLB 13 consisting of 65% monoglucoside and 35% oligoglucoside with less than 1% of fatty alcohol.
Micelle formation and adsorption at the Ti02 interface of a series of polystyrene-polythylene oxide(PS-PEO) block copolymer in aqueous solution was studied using fluorescence probing and small-angle X-ray methods. Further, the stability of aqueous Ti02 dispersion in the presence of copolymer was investigated by microelectrophoresis, optical density and sedimentation measurements. The dissolution of pyrene as fluorescent probe in aqueous surfactant solution leads to a slow decrease of the I1/I3 ratio, as the copolymer concentration increase; I1 and I3 are respectively the intensities of the first and third vibrionic peaks in the pyrene fluorescence emission. The behaviour was due to the characteristics of the copolymers and/or to the copolymer association efficiency in water. Moreover, the adsorption at the plateau level increases with decreasing PEO until chain length. The zeta potential of TiO2 particles decreases with increasing copolymer concentration and reaches a plateau value. Finally, stabilization using block copolymers was more effective with samples having higher weight fractions of PS block.
Density, viscosity, conductance, dye solubility and carbon-13 nmr studies were performed in aqueous solution of three disodium 4-n-alkyl-3-sulfonatosuccinate anionic surfactant at 20℃. The cmc values were 0.14 mol/l for the disodium-4-n-octyl-3-sulfonatosuccinate(R8)S), 0.041mol/l for the disodium-4-n-decyl-3-sulfonatosuccinate(R10S), and 0.018mol/l for the disodium-n-dodecyl-3-sulfonatosuccinate 〈R12S). The aggregation numbers determined viscometrically and conductimetrically were 28 for R8S, 48 for R10S, and 67 for R12S. The volume changes upon micellization were 8.9cm3/mol for R8S, 9.5cm3/mol for R10S, and 10.1cm3/mol for R12S. Binding constants for the dye pada to the micelles and the fractions of unbound counter-ion were also obtained. The two polar heads with their carbon linkage were likely in an aqueous environment in the R8S micelles with the micelles themselves being spherical.
Resource recovery and recycling of materials and products, including polyurethanes is viewed as a necessity in today's society. Most urethane polymers are made from a polyol and a diisocyanate. these and be chemicals such as water, diamines or diols that react with isocyanate groups and add to the polymer backbone. The problems of recycling polyurethane wastes has major technological, economic and ecological significance because polyurethane itself is relatively expensive and its disposal whether by burning is also costly. In general, the recycling methods for polyurethane could be classified as mechanical, chemical and feedstock. In the chemical recycling method, there are hydrolysis, glycolysis, pyrolysis and aminolysis. This study, the work was carried out glycolysis using sonication ant catalyzed reaction. Different kinds of recycled polyols were produced by current method(glycolysis), catalyzed reaction and sonication as decomposers and the chemical properties were analyzed. The reaction results in the formation of polyester urethane diols, the OH value which is determined by the quantity of diol used for the glycolysis conditions. The glycolysis rates by sonication for the various glycols, increased as fallows: PPG <PEG < DEG < EG. The recycled polyol of sonication reaction had much higher OH value, much lower decomposition temperature and time than the recycled polyol of current method in which same glycols and catalyst were used.
Recently, there has been considerably interested in the development to new functional gemini type anionic surfactant, sodium bis-n-alkyl sulfonatosuccinate, had been synthesized through the addition reaction of sodium bisulfite to bis-n-alkyl maleate, in which water was azeotropically distilled by adding benzene to the reaction system, gave a good yield. All the surface activities including krafft point, surface tension, emulsion power and foaming were measure and cmc was evaluated in dilute solution. This results showed a lower ability in 27~30dyne/cm than single-chain surfactant with 32~35dyne/cm to surface tension. Also its cmc value much smaller in (6.5~10)×10-4mcal/l than single-chain surfactant with (40~45)×10-4mcal/l concentration. In foaming ability and foam stability of gemini surfactant had especially a good ability in approximately 100~150ml, and in emulsing power they exhibited a good emulsing phase and stability, and Krafft points were 0~10℃.
In search for several fatty acid with unusual structure in vegetable oils, we have found that unknown peaks were shown on GLC in the analysis of fatty acids of the lipids from the pulp of ripened jujube (Zizypus jujuba var. inermis) fruits. These fatty acids were identified as a series of cis-monoenoic acids with Ω-5 double bond system such as C14:1Ω5, C16:1Ω5 and C18:1Ω5, including Ω-7 fatty acid as C16:1Ω7 and C18:1Ω7, by GLC, solid-phase extraction silver ion-column chromatographic, GLC-mass spectrometric and IR techniques. First of all, total fatty acid methyl esters were resolved into saturated and branched fatty acid, monoenoic acid, dienoic acid, and trienoic acid fraction, respectively, with 100% dichloromethane (DCM), DCM/acetone (9:1, v/v) 100% acetone, and acetone/ acetonitrile (97:3, v/v) solvent system. Unknown fatty acids were included in the monoenoic fraction and were confirmed to have cis-configuration by IR. Picolinyl esters of monoenoic fatty acids gave distinct molecular ion peak and dominant diagnostic peaks, for example, m/z 317, 220 and 260 fragment for cis-C14:1Ω5, m/z 345, m/z 248 and 288 fragment for cis-C16:1Ω5 and m/z 373, m/z 276 and 316 fragment for cis-C18:1Ω5. In this way the occurrence of cis-C16:1Ω7 and cis-C18:1Ω7 could be deduced from the appearance of prominent fragments as m/z 345, 220 and 260, and m/z 373, 248 and 280. Level of total Ω-5 fatty acids amounted to about 30% in the fatty acid composition with the predominance of C16:1Ω5 (18.7~25.0%), in the semi-ripened and/or ripened samples collected in September 14 (C16:1Ω5 ; 18.7%, C14:1Ω5 ; 3.6% and C18:1Ω5 ; 3.0%), September 22 (C16:1Ω5 ; 25.0%, C14:1Ω5 ; 1.4% and C18:1Ω5 ; 2.6%), and October 7 (C16:1Ω5 ; 24.7%, C14:1Ω5 ; 7.7% and C18:1Ω5 ; 2.5%). However, the lipids extracted from unripened jujube in July and August contain these unusual fatty acids as low as negligible. It could be observed that the level of Ω-5 fatty acids in the pulps increased sharply with an elapse of ripening time of jujube fruits. Other monoenoic fatty acids with Ω-7 series, C16:1Ω7 (palmitoleic acid) and C18:1Ω7 (cis-vaccenic acid) could be detected. And in the lipids of the kernel and leaf of jujube, none of Ω-5 fatty acids could be detected.
Allylaliphatic carboxylate oligomers were prepared from polymerization giving allyl aliphatic carboxylates in the presence of potassium persulfate in methanol and the α-sulfonation of these allyl aliphatic carboxylates oligomers were carried by direct addition of dry sulfur trioxide. The dispersing performance of oligomer type anionic surfactants and SDS in the aqueous suspension of Fe2O3 and Tio2 particles were evaluated by particle size distribution and ξ-potential measurement. As results, the particles of Fe2O3 and Tio2 were flocculated by addition of small amount of oligomer type anionic surfactants and SDS, then the flocks redispersed by more addition oligomer type anionic surfactants and SDS. The dispersion and flocculation were observed in lower concentration range of oligomer type anionic surfactants than SDS.
These N-acyl amino acid surfactants is normally produced by reaction of acid anhydride with sodium l-glutamate hydrolysates under Schotten-Baumann condition i.e., in alkaline aqueous medium. To avoid using fatty acid chlorides, acylations were also carried out with the fatty acids themselves or with their methyl esters, but unfortunately these methods cannot be used in practice, dodecenyl succinic anhydride, was to be studied for their suitability as acylating agents the production if acylated glutamine hydrolysates. The surface activities including surface tension forming power, forming stability and emulsifying power were measured. The experimental results revealed that the products have a good emulsifying power. Thus, there derivatives will be expected to be used an emulsifying agent for O/W type cosmetic emulsion.
Ultra-thin films of organic charge transfer complex were prepared on a hydrophilic substrate by Langmuir-Blodgett(LB) technique. In this study, the photoelectric properties of a LB film consisting of (N-docosyl quinolinium)-TCNQ(1:2) complex was investigated. The visible light(λ : 700 nm) of xenon lamp was illuminated on the LB films and light absorptivity and photoconductivity were observed. The photocurrent increased linearly and was saturated at the light intensity of 23 μW/cm2.
Curing reaction was carried out with the acrylic resin (ACR) [n-butyl acrylate/atyrene/2-hydroxyethyl methacrylate/acetoacetoxyethyl methacrylate (AAEM)] synthesized before and a curing agent, hexamethoxymethylmelamine (HMMM). With rotational rheometer, the effect of catalysts on curing rate of acrylic resin/melamine was examined. Among the four catalysts used, p-toluene sulfonic acid showed the highest reactivity, and the optimum amount of catalyst was 0.5 phr. It was observed that in the ACR/HMMM curing reaction, gelation point was lowered with the increasing the amount of AAEM and HMMM in the ACR.
An acrylic resin was synthesized with several monomers, styrene(St), 2-hydroxyethyl methacrylate(2-HEMA), n-butyl acrylate, methyl methacrylate, and acetoacetoxyethl methacrylate(AAEM) to prepare a high-solid coatings. Then, a high-solid acryl/melamine coatings was prepared by curing the acrylic resin with a curing agent, hexamethoxymethylmelamine(HMMM). The curing behavior of the acrylic resin with HMMM was investigated by the Ozawa method using DSC. For AAEM/HMMM and 2-HEMA/HMMM curing reactions, activation energies were 33.01 and 27.12 kcal/mol and frequency factors were 9.54×1015 and 1.53×1013 min-1, respectively. From the results, it was found out that 2-HEMA showed higher reactivity with the curing agent than AAEM.
Acrylic quarternary polymers were synthesized to prepare high-solid coatings. Acrylic resins were synthesized by the radical polymerization of n-butyl acrylate, methyl methacrylate, 2-hydroxyethyl methacrylate and acetoacetoxyethyl methacrylate. From the results of experiment on reaction condition to get high-solid acrylic resins with 70% solid content and viscosity of 1200cps, it was found that di-tert-amyl peroxide among the four types of initiators have lower viscosity and higher degree of conversion. The optinum initiator amount, chain transfer agent, reaction temperature and the dropping time were 5wt%, 4wt%, 150℃ and 5hrs, respectively.
Eu(III) exhibits one electron-transfer reduction at E1/2 = -0.564 V(vs. Ag/AgCl) and the hypersensitive peak at 615 ㎚ corresponding to 5D0→7F2 transition in 0.1 M LiClO4 aqueous solution. Upon the addition of 2,6-pyridine dicarboxylic acid(PDA) to the Eu(III) aqueous soultion, the reduction potential shifts negatively and the PDA, and the Eu(III)-PDA complex emits great fluorescence than free-Eu(III) ion at 615 nm. The results are interpreted in term of the electrochemical and spectrofluorometric studies.
White emission is important for applying organic EL devices to full-color flat panel display and backlight for liquid crystal display. In order to obtain white emission, the use of a light-emitting material which shows the white emission by itself is advantageous for these applications because of its high reliability and productivity. A chelate-metal complex such as zinc bis(2-(2-hydroxyphenyl) benzothiazolate) (Zn(BTZ)2 was known to emit white light with a broad electroluminescence. In this study, the electroluminescent characteristics of Be(BTZ)2 and Mg(BTZ)2, as well as Zn(BTS)2 were investigated using organic electroluminescent devices with the structure of ITO/TPD/ Be(BTZ)2, Mg(BTZ)2, or Zn(BTZ)2/Al. It was found that the device containing Be(BTZ)2 showed the highest power efficiency.
Theoretical model has been studied for the transport phenomena of molecules in the system where an electric potential is applied to the system in the axial direction. The effect of electrophoretic convection in the polymeric media is significantly contributed to separate large ionic-molecules because the conformation of large ionic-molecule quickly orients in the field direction. The dependence of the transport in the polymeric media upon field intensity and molecular size aids in understanding the transport of large ionic-molecule in the system, since the convective velocity of large ionic-molecule is accelerated inside a porous material. The transport distance of individual large ionic-molecule can be predicted using the reptation theories.
Cellulose tosylate(CT) was prepared by reaction of cellulose with p- toluenesulfonylchloride in DMAc/LiCl homogeneous system. In order to study a reversible photoisomerization of disperse red 1(DR-1) attached on natural polymer, cellulose tosylate containing DR-1(DR-1/CT adduct) was prepared at 110℃ in DMAc, and the changes of UV/Vis spectra of its solutions and thick film were investigated by alternate irradiation technique. Form the UV/Vis spectra of DR-1/CT adduct dissolved in cosolvents, such as DMAc, DMAc/THF, DMAc/benzene, and DMAc/chloroform and irradiated with 360 nm and 450 nm ligths, we found out changes of UV/Vis spectra were reversible in all solvents systems and we found out changes of UV/Vis spectra were reversible at thick film, also.
Dual-actions are the most recently used delivery system in drug study. Dual-action agents are unique chemical entities comprised of two different type of antibacterial compounds covalently linked together in a single molecule in such a way that both components are able to exert their bactericidal properties. Crosslinked sulfadiazine-sulfanilamide such as antibiotics is synthesized by synthetic handle with glutaraldehyde. As a result, New synthetic antibacterial agent exhibited the broad antibacterial activities against gram(+) and gram(-) of 4 strains and a long durability supposing that the stomach and blood.