검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 13,617

        41.
        2024.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Silicon carbide (SiC) has emerged as a promising material for next-generation power semiconductor materials, due to its high thermal conductivity and high critical electric field (~3 MV/cm) with a wide bandgap of 3.3 eV. This permits SiC devices to operate at lower on-resistance and higher breakdown voltage. However, to improve device performance, advanced research is still needed to reduce point defects in the SiC epitaxial layer. This work investigated the electrical characteristics and defect properties using DLTS analysis. Four deep level defects generated by the implantation process and during epitaxial layer growth were detected. Trap parameters such as energy level, capture-cross section, trap density were obtained from an Arrhenius plot. To investigate the impact of defects on the device, a 2D TCAD simulation was conducted using the same device structure, and the extracted defect parameters were added to confirm electrical characteristics. The degradation of device performance such as an increase in on-resistance by adding trap parameters was confirmed.
        4,000원
        42.
        2024.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Scanning probe microscopy (SPM) has become an indispensable tool in efforts to develop the next generation of nanoelectronic devices, given its achievable nanometer spatial resolution and highly versatile ability to measure a variety of properties. Recently a new scanning probe microscope was developed to overcome the tip degradation problem of the classic SPM. The main advantage of this new method, called Reverse tip sample (RTS) SPM, is that a single tip can be replaced by a chip containing hundreds to thousands of tips. Generally for use in RTS SPM, pyramid-shaped diamond tips are made by molding on a silicon substrate. Combining RTS SPM with Scanning spreading resistance microscopy (SSRM) using the diamond tip offers the potential to perform 3D profiling of semiconductor materials. However, damage frequently occurs to the completed tips because of the complex manufacturing process. In this work, we design, fabricate, and evaluate an RTS tip chip prototype to simplify the complex manufacturing process, prevent tip damage, and shorten manufacturing time.
        4,000원
        43.
        2024.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Nanoparticles are commonly used to avoid the opaque white color of TiO2 based sunscreen. However, a dispersing agent is typically required because of the tendency of the nanoparticles (NPs) to agglomerate. Stearic acid is one kind of dispersing agent often used for sunscreen products. However, according to the MSDS data sheet on stearic acid, stearic acid is highly hazardous to aquatic life and causes irritation on human skin. To avoid this problem, in this study a safer organic dispersing agent extracted from Korean seaweed has been studied to disperse TiO2 nanoparticles, and further use as an active agent in sunscreen products. The presence of phytochemicals in seaweed extract, especially alginate, can disperse TiO2 nanoparticles and improve TiO2 dispersion properties. Results show that seaweed extract can improve the dispersion properties of TiO2 nanoparticles and sunscreen products. Reducing the agglomeration of TiO2 nanoparticles improves sunscreen properties, by making it less opaque white in color, and increasing UV protection value. It was also confirmed that adding seaweed extract into sunscreen products had no irritating effects on the human skin, making it more desirable for cosmetics application.
        4,000원
        44.
        2024.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The optimization of deacetylation process parameters for producing chitosan from isolated chitin shrimp shell waste was investigated using response surface methodology with central composite design (RSM-CCD). Three independent variables viz, NaOH concentration (X1), radiation power (X2), and reaction time (X3) were examined to determine their respective effects on the degree of deacetylation (DD). The DD of chitosan was also calculated using the baseline approach of the Fourier Transform Infrared (FTIR) spectra of the yields. RSM-CCD analysis showed that the optimal chitosan DD value of 96.45 % was obtained at an optimized condition of 63.41 % (w/v) NaOH concentration, 227.28 W radiation power, and 3.34 min deacetylation reaction. The DD was strongly controlled by NaOH concentration, irradiation power, and reaction duration. The coefficients of correlation were 0.257, 0.680, and 0.390, respectively. Because the procedure used microwave radiation absorption, radiation power had a substantial correlation of 0.600~0.800 compared to the two low variables, which were 0.200~0.400. This independently predicted robust quadratic model interaction has been validated for predicting the DD of chitin.
        4,000원
        45.
        2024.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Thin films of yttria-stabilized zirconia (YSZ) nanoparticles were prepared using a low-temperature deposition and crystallization process involving successive ionic layer adsorption and reaction (SILAR) or SILAR-Air spray Plus (SILAR-A+) methods, coupled with hydrothermal (175 °C) and furnace (500 °C) post-annealing. The annealed YSZ films resulted in crystalline products, and their phases of monoclinic, tetragonal, and cubic were categorized through X-ray diffraction analysis. The morphologies of the as-prepared films, fabricated by SILAR and SILAR-A+ processes, including hydrothermal dehydration and annealing, were characterized by the degree of surface cracking using scanning electron microscopy images. Additionally, the thicknesses of the YSZ thin films were compared by removing diffusion layers such as spectator anions and water accumulated during the air spray plus process. Crack-free YSZ thin films were successfully fabricated on glass substrates using the SILAR-A+ method, followed by hydrothermal and furnace annealing, making them suitable for application in solid oxide fuel cells.
        4,000원
        46.
        2024.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The lightweight and high strength characteristics of aluminum alloy materials make them have promising prospects in the field of construction engineering. This paper primarily focuses on aluminum alloy materials. Aluminum alloy was combined with concrete, wood and carbon fiber reinforced plastic (CFRP) cloth to create a composite column. The axial compression test was then conducted to understand the mechanical properties of different composite structures. It was found that the pure aluminum tube exhibited poor performance in the axial compression test, with an ultimate load of only 302.56 kN. However, the performance of the various composite columns showed varying degrees of improvement. With the increase of the load, the displacement and strain of each specimen rapidly increased, and after reaching the ultimate load, both load and strain gradually decreased. In comparison, the aluminum alloy-concrete composite column performed better than the aluminum alloy-wood composite column, while the aluminum alloy-wood-CFRP cloth composite column demonstrated superior performance. These results highlight excellent performance potential for aluminum alloy-wood-CFRP composite columns in practical applications.
        4,000원
        47.
        2024.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Slipchip offers advantages such as high-throughout, low cost, and simple operation, and therefore, it is one of the technologies with the greatest potential for high-throughput, single-cell, and single-molecule analyses. Slipchip devices have achieved remarkable advances over the past decades, with its simplified molecular diagnostics gaining particular attention, especially during the COVID-19 pandemic and in various infectious diseases scenarios. Medical testing based on nucleic acid amplification in the Slipchip has become a promising alternative simple and rapid diagnostic tool in field situations. Herein, we present a comprehensive review of Slipchip device advances in molecular diagnostics, highlighting its use in digital recombinase polymerase amplification (RPA), loop-mediated isothermal amplification (LAMP), and polymerase chain reaction (PCR). Slipchip technology allows users to conduct reliable droplet transfers with high-throughput potential for single-cell and molecule analyses. This review explores the device’s versatility in miniaturized and rapid molecular diagnostics. A complete Slipchip device can be operated without special equipment or skilled handling, and provides high-throughput results in minimum settings. This review focuses on recent developments and Slipchip device challenges that need to be addressed for further advancements in microfluidics technology.
        4,000원
        48.
        2024.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Fluorine-doped tin oxide (FTO) has been used as a representative transparent conductive oxide (TCO) in various optoelectronic applications, including light emitting diodes, solar cells, photo-detectors, and electrochromic devices. The FTO plays an important role in providing electron transfer between active layers and external circuits while maintaining high transmittance in the devices. Herein, we report the effects of substrate rotation speed on the electrical and optical properties of FTO films during ultrasonic spray pyrolysis deposition (USPD). The substrate rotation speeds were adjusted to 2, 6, 10, and 14 rpm. As the substrate rotation speed increased from 2 to 14 rpm, the FTO films exhibited different film morphologies, including crystallite size, surface roughness, crystal texture, and film thickness. This FTO film engineering can be attributed to the variable nucleation and growth behaviors of FTO crystallites according to substrate rotation speeds during USPD. Among the FTO films with different substrate rotation speeds, the FTO film fabricated at 6 rpm showed the best optimized TCO characteristics when considering both electrical (sheet resistance of 13.73 Ω/□) and optical (average transmittance of 86.76 % at 400~700 nm) properties with a figure of merit (0.018 Ω-1).
        4,000원
        49.
        2024.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        High-Manganese (Mn) austenitic steel, with over 24 wt% Mn content, offers outstanding mechanical properties in cryogenic settings, making it a potential replacement for existing cryogenic materials. This high manganese steel exhibits high strength, ductility, and wear resistance, making it promising for applications like LNG tanks, flanges, and valves. To operate in cryogenic environments, hot forging and heat treatment processes are vital, especially in flange production. The cooling rate during high-temperature cooling after hot forging plays a critical role in influencing the microstructure and mechanical properties of high manganese steel. The rate at which cooling occurs during this process influences the size of the grains and the distribution of manganese and consequently has an impact on mechanical properties. This study assessed the microstructure and mechanical properties based on different cooling rates during the hot forging of High-Mn steel flanges. Comparing air and water cooling after hot forging, followed by heat treatment, revealed notable differences in grain size. These differences directly impacted mechanical properties such as tensile strength, hardness, and Charpy impact property. Understanding these effects is crucial for optimizing the performance and reliability of High-Mn steel in cryogenic applications.
        4,200원
        50.
        2024.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        New piezoelectric and triboelectric materials for energy harvesting are being widely researched to reduce their processing cost and complexity and to improve their energy conversion efficiency. In this study, BaTiO3 films of various thickness were deposited on Ni foams by R.F. magnetron sputtering to study the piezoelectric and triboelectric properties of the porous spongy structure materials. Then piezoelectric nanogenerators (PENGs) were prepared with spongy structured BaTiO3 and PDMS composite. The output performance exhibited a positive dependence on the thickness of the BaTiO3 film, pushing load, and poling. The PENG output voltage and current were 4.4 V and 0.453 μA at an applied stress of 120 N when poled with a 300 kV/cm electric field. The electrical properties of the fabricated PENG were stable even after 5,000 cycles of durability testing. The triboelectric nanogenerators (TENGs) were fabricated using spongy structured BaTiO3 and various polymer films as dielectrics and operated in a vertical contact separation mode. The maximum peak to peak voltage and current of the composite film-based triboelectric nanogenerator were 63.2 V and 6 μA, respectively. This study offers new insights into the design and fabrication of high output nanogenerators using spongy structured materials.
        4,000원
        51.
        2024.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Al2O3 has excellent sintering properties and is important in semiconductor manufacturing processes that require high-temperature resistance and chemical inertness in a plasma environment. In this study, a comprehensive analysis of the chemical characteristics, physical properties, crystal structure, and dispersion stability of three commercially available Al2O3 powders was conducted. The aim was to provide a technological foundation for selecting and utilizing appropriate Al2O3 powders in practical applications. All powders exhibited α-Al2O3 as the main phase, with the presence of beta-phase Na2O-11Al2O3 as the secondary phase. The highest Na+ ion leaching was observed in the aqueous slurry state due to the presence of the secondary phase. Although the average particle size difference among the three powders was not significant, distinct differences in particle size distribution were observed. ALG-1SH showed a broad particle size distribution, P162 exhibited a bimodal distribution, and AES-11 displayed a uniform unimodal distribution. Highconcentration Al2O3 slurries showed differences in viscosity due to ion release when no dispersant was added, affecting the electrical double-layer thickness. Polycarboxylate was found to effectively enhance the dispersion stability of all three powders. In the dispersion stability analysis, ALG-1SH exhibited the slowest sedimentation tendency, as evidenced by the low TSI value, while P162 showed faster precipitation, influenced by the particle size distribution.
        4,000원
        52.
        2024.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this investigation, samples of the chemical (Hg1-xPbxBa2Ca1.8Mg0.2Cu3O8+δ) were prepared utilizing a solid-state reaction technique with a range of lead concentrations (x = 0.0, 0.05, 0.10, and 0.20). Specimens were pressed at 8 tons per square centimeter and then prepared at 1,138 K in the furnace. The crystalline structure and surface topography of all samples were examined using X-ray diffraction (XRD) and atomic force microscopy (AFM). X-ray diffraction results showed that all of the prepared samples had a tetragonal crystal structure. Also, the results showed that when lead was partially replaced with mercury, an increase in the lead value impacted the phase ratio, and lattice parameter values. The AFM results likewise showed excellent crystalline consistency and remarkable homogeneity during processing. The electrical resistivity was calculated as a function of temperature, and the results showed that all samples had a contagious behavior, as the resistivity decreased with decreasing temperature. The critical temperature was calculated and found to change, from 102, 96, 107, and 119 K, when increasing the lead values in the samples from 0.0 to 0.05, 0.10, and 0.20, respectively.
        4,000원
        53.
        2024.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This study successfully prepared high-porosity aluminosilicate fibrous porous ceramics through vacuum suction filtration using aluminosilicate fiber as the primary raw material and glass powder as binder, with the appropriate incorporation of glass fiber. The effects of the composition of raw materials and sintering process on the structure and properties of the material were studied. The results show that when the content of glass powder reached 20 wt% and the samples were sintered at the temperature of 1,000 °C, strong bonds were formed between the binder phase and fibers, resulting in a compressive strength of 0.63 MPa. When the sintering temperatures were increased from 1,000 °C to 1,200, the open porosity of the samples decreased from 89.08 % to 82.38 %, while the linear shrinkage increased from 1.13 % to 10.17 %. Meanwhile, during the sintering process, a large amount of cristobalite and mullite were precipitated from the aluminosilicate fibers, which reduced the performance of the aluminosilicate fibers and hindered the comprehensive improvement in sample performance. Based on these conditions, after adding 30 wt% glass fiber and being sintered at 1,000 °C, the sample exhibited higher compressive strength (1.34 MPa), higher open porosity (89.13 %), and lower linear shrinkage (5.26 %). The aluminosilicate fibrous porous ceramic samples exhibited excellent permeability performance due to their high porosity and interconnected three-dimensional pore structures. When the samples were filtered at a flow rate of 150 mL/min, the measured pressure drop and permeability were 0.56 KPa and 0.77 × 10-6 m2 respectively.
        4,000원
        54.
        2024.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This research investigated the preparation of activated carbon derived from Krabok (Irvingia malayana) seed shells to improve the quality of crude glycerol obtained during biodiesel production. The activated carbon was prepared using a dry chemical activation method with NaOH, utilizing an innovative biomass incinerator. The results revealed that the resulting KC/AC-two-step exhibited favorable physicochemical adsorption properties, with a high surface area of 758.72 m2/g and an iodine number of 611.10 mg/g. These values meet the criteria of the industrial product standard for activated carbon No. TIS 900-2004, as specified by the Ministry of Industry in Thailand. Additionally, the adsorption efficiency for methylene blue reached an impressive 99.35 %. This developed activated carbon was then used to improve the quality of crude glycerol obtained from biodiesel production. The experimental results showed that the KC/AC-two-step increased the purity of crude glycerol to 73.61 %. In comparison, commercially available activated carbon (C/AC) resulted in a higher crude glycerol purity of 81.19 %, as analyzed by the GC technique. Additionally, the metal content (Zn, Cu, Fe, Pb, Cd, and Na) in purified glycerol using KC/AC-two-step was below the standards for heavy metals permitted in food and cosmeceuticals by the Food and Drug Administration of Thailand and the European Committee for Food Contact Materials and Articles. As a result, it can be inferred that Krabok seed shells have favorable properties for producing activated carbon suitable as an adsorbent to enhance crude glycerol purity. Furthermore, the improved crude glycerol from this research has potential for various industrial applications.
        4,200원
        55.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: Cerebral palsy presents significant challenges in motor function for affected children. While conventional bottom-up approaches are common in physical therapy, there is increasing interest in the efficacy of the top-down approach. Objectives: To investigated the impact of applying the top-down approach in physical therapy for a child diagnosed with cerebral palsy, focusing on functional improvement and quality of life. Design: A single-case study. Methods: The patient was a 15-year-old boy with spastic diplegic cerebral palsy who was entering middle school. Cerebral palsy treatment approach of the top-down method (jumping rope) was used to guide and direct physical therapy. Results: The child improved in muscle strength of lower extremity, gross motor function, participation and self-esteem, but the pattern of his gait seemed to be more severe on tiptoe. When the child participated in a jumping rope class, he was able to do more than 10 jumps. Conclusion: The effectiveness of the top-down approach in enhancing functional outcomes and quality of life in children with cerebral palsy. It highlights the potential of this approach in pediatric physical therapy, warranting further research validation.
        4,000원
        56.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: Kinesio taping is being applied to improve ankle dorsiflexion in stroke patients. Currently, the elasticity of kinesio taping is applied in various ways. Objectives: To investigated the effect of tibialis anterior kinesio taping elasticity level on gait speed in stroke patients. Design: A randomized cross-over pilot study. Methods: A total of 12 study subjects were allowed to experience three conditions within a single group. The three conditions are strong elastic taping condition, weak elastic taping condition, and non-elastic taping condition. Study subjects were randomly assigned to each condition sequentially. For the evaluation, gait variables (cadence, gait speed, stride length) were measured 24 hours after applying the taping appropriate for each condition. Results: The strong elastic taping condition significantly increased gait variables compared to the weak elastic taping and non-elastic taping conditions (P<.05). Weak elastic taping significantly increased gait variables compared to non-elastic taping (P<.05). Conclusion: As tibialis anterior kinesio taping elasticity increased, gait variables significantly improved in stroke patients.
        4,000원
        57.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: Children with cerebral palsy face challenges in maintaining body stability because of structural and functional defects. Their ability for responsive balance control is diminished. While there exist various trunk stabilization exercises such as Kinetic Link training (KLT) and the Bird-dog posture, there is a notable dearth of research that applies KLT specifically to children with cerebral palsy. Objectives: To investigate the effects of KLT and Bird-dog exercise on gross motor function and balance in children with cerebral palsy. Design: Quaxi-experimental study. Methods: The study participants were randomly divided into two groups: 15 individuals in the KLT group and 15 in the Bird-dog group. General characteristics were examined, and initial measurements of Gross motor function measure (GMFM) and Pediatric balance scale (PBS) were taken prior to the intervention. Each group engaged in KLT exercises and Bird-dog exercises for 20 minutes, three times a week over an 8 week period. Following the completion of the 8 week intervention, secondary measurements of GMFM and PBS were conducted. Results: In the KLT group, both PBS and GMFM showed a significant increase after the intervention compared to before (P<.05). Similarly, in the Bird-dog group, both PBS and GMFM significantly increased after the intervention compared to before (P<.05). There was a significant difference observed in PBS when comparing the pre- and post-intervention changes between the two groups (P<.05), whereas no significant difference was found in GMFM between the groups when comparing the pre- and post-intervention changes (P>.05). Conclusion: The interventions involving KLT and Bird-dog exercises were observed to effectively enhance PBS and GMFM in children with cerebral palsy. Specifically, it was evident that KLT was more beneficial in improving balance abilities compared to Bird-dog exercise.
        4,000원
        58.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: Most studies targeting stroke patients have confirmed improvements in balance and walking using immersive and non-immersive virtual reality training programs. However, to date, there are not many studies targeting brain activation enhancement for the two training programs. Objectives: The purpose of this study is to investigate the effect of a virtual reality training program on the EEG of stroke patients according to differences in immersion. Design: A randomized controlled trial. Methods: A total of 20 stroke patients, with 10 in an immersive virtual reality training programs group (IVRG) and 10 in a non-virtual reality training programs group (NVRG) were randomly assigned to exercise three times a week for 6 weeks. EEG was measured for 2 minutes using DSI-24. Results: The intra-group difference in relative alpha waves of brain waves was not significant for both groups, and the between-group difference was not significant. Differences in EEG relative beta waves in the experiment group were significant in the Fp1, Fp2, Cz, C3, C4, P3, and O2 in the experiment group, and significant in the Cz and O2 in the control group. As a result of comparing the differences between each group before and after, there was a significant difference in the Fp1 area. Conclusion: Virtual reality training programs based on differences in immersion were found to have a positive effect on EEG. Therefore, it is believed that a virtual reality training program based on differences in immersion can be provided as a clinical intervention method for EEG.
        4,500원
        59.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: There is a lack of research on sling neurac exercise interventions for craniovertebral angle (CVA), head rotation angle, range of motion (ROM), and neck postural alignment in adults with forward head posture Objectives: To investigate the Immediate effects of sling neurac exercise on craniosacral angulation, ROM, and neck postural alignment in adults with forward head posture. Design: Quaxi-experimental study. Methods: Fifty young adults in their 20s were divided into a sling neurac exercise group (SNEG) and a control group (CG). SNEG conducted sling neurac exercise intervention for one day, and CG did not implement intervention. Craniosacral angulation, ROM, and postural alignment before and after exercise was evaluated for each group. Results: In the sling neurac exercise group (SNEG), CVA, cranial rotation angle (CRA), ROM, and postural alignment improved significantly after intervention (all P<.01). There were no significant differences in the control group (CG) (all P>.05). After the intervention, there were significant differences between the groups in craniosacral angulation, ROM, and postural alignment (all P<.01). Conclusion: The Sling neurac exercise can significantly improve CVA, CRA, ROM, and postural alignment. Therefore, it is suggested to consider sling neurac exercise as an intervention.
        4,000원
        60.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: Effective trunk stabilization has been a cornerstone in physiotherapy, particularly for individuals with lower back issues. While bridging exercises were traditionally employed for this purpose, there has been a growing interest in their modified versions to optimize therapeutic benefits. Objectives: To investigated the differential effects of traditional and modified bridging exercises, particularly when varying leg support and integrating abduction maneuvers during sling-assisted exercises, on trunk muscle responsiveness. Design: Cross-Sectional study. Methods: A group of twenty participants was subjected to three exercise protocols: Bilateral Limb Bridging (BLB), Single Limb Bridging (SLB), and Single Limb Bridging combined with Hip Abduction (SLBHA). Using Surface Electromyography (EMG), the study captured the activation patterns of the Internal Oblique (IO), Erector Spinae (ES), and Multifidus (MF) muscles. Statistical analysis was conducted using the Kruskal-Wallis test, with post-hoc examination for detailed insights. For data consistency, normalization was executed based on Maximum Voluntary Isometric Contractions, and EMG data interpretation was conducted using the RMS technique. Results: The most prominent variations in muscle activation were identified in the IO muscles on both sides. The left IO displayed marked activation disparities between BLB vs. SLB and SLB vs. SLBHA. Analogous observations were made for the right IO when comparing BLB to SLBHA and BLB to SLB. Conversely, ES and MF muscle activations remained consistent across the different exercises. Conclusion: Modified bridge exercises with sling-assisted leg supports with abduction can selectively activate IO muscles, with a noticeable asymmetrical effect favoring the left side.
        4,000원
        1 2 3 4 5