검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 33

        21.
        2011.07 KCI 등재 서비스 종료(열람 제한)
        In order to develop bacterial cellulose (BC) with antimicrobial activity against pathogenic microorganisms, silver and chitosan were incorporated into BC, respectively. Experiment results showed that antimicrobial activity against pathogenic microorganisms was improved with increasing silver concentration. Chitosan also showed a direct proportion between its concentration and antimicrobial activity. These results suggest that antimicrobial effects of BC using silver and chitosan are well proven to be effective. We also tested the stainability of BC with natural colorant for the application of food industry. Stainability of BC was enhanced with increasing natural colorant concentration. Decolorization of BC stained was observed by dipping it into distilled water with one hour-intervals. As a result, there was no significant difference. Combination of natural colorant-stainability and antibiosis of BC is expected to be useful in making colored antibiotic BC in various industrial application areas, considering its antimicrobial activity, high stainability and low decolorization tendency.
        22.
        2010.10 KCI 등재 서비스 종료(열람 제한)
        This study was conducted to isolate and characterize a novel feather-degrading bacterium producing keratinase activity. A strain K9 was isolated from soil at poultry farm and identified as Xanthomonas sp. K9 by phenotypic characters and 16S rRNA gene analysis. The cultural conditions for the keratinase production were 0.3% fructose, 0.1% gelatin, 0.04% K2HPO4, 0.06% KH2PO4, 0.05% NaCl and 0.01% FeSO4 with an initial pH 8.0 at 30℃ and 200 rpm. In an optimized medium containing 0.1% chicken feather, production yield of keratinase was approximately 8-fold higher than the yield in basal medium. The strain K9 effectively degraded chicken feather meal (67%) and duck feather (54%), whereas human nail and human hair showed relatively low degradation rates (13-22%). Total free amino acid concentration in the cell-free supernatant was about 25.799 mg/l. Feather hydrolysate produced by the strain K9 stimulated growth of red pepper, indicating Xanthomonas sp. K9 could be not only used to increase the nutritional value of chicken feather but also a potential candidate for the development of natural fertilizer applicable to crop plant soil.
        23.
        2010.09 KCI 등재 서비스 종료(열람 제한)
        This study was performed to investigate the nutritional conditions controlling keratinase activity in Bacillus megaterium F7-1. B. megaterium F7-1 produced keratinase using chicken feather as a sole source of carbon, nitrogen and sulfur. Addition of the feather medium with glucose enhanced keratinase production (68.9 U/ml), compared to control without glucose (63.2 U/ml). The synthesis of keratinase was repressed by addition of NH4Cl in B. megaterium F7-1. The highest keratinase production (70.9 U/ml) was obtained with the feather medium containing glucose and MgSO4·7H2O. Keratinase was produced in the absence of feather (4.9 U/ml), indicating its constitutive synthesis. Feather degradation resulted in free SH group formation. B. megaterium F7-1 effectively degraded chicken feather meal (86%), whereas duck feather, human nail, human hair and sheep wool displayed relatively low degradation rates (8-34%).
        24.
        2008.09 KCI 등재 서비스 종료(열람 제한)
        The effects of inorganic salts, inoculum concentration, aeration rate and shaking speed on insoluble phosphate solubilization by Pseudomonas fluorescens RAF15 were investigated. Soluble phosphate production was dependent on the presence of MgCl₂·6H₂O and MgSO₄·7H₂O in the medium. Supplementation of medium with 0.01% CaCl₂·2H₂O and 0.01% NaCl slightly increased soluble phosphate production. The optimal medium compositions for the solubilization of insoluble phosphate by P. fluorescens RAF15 were 1.5% glucose, 0.005% urea, 0.3% MgCl₂·6H₂O, 0.01% MgSO₄·7H₂O, 0.01% CaCl₂·2H₂O and 0.01% NaCl, respectively. Optimal inoculum concentration was 2.0%(v/v). Maximum soluble phosphate production was obtained with 20-50 ml/250-ml flask and 200 rpm of shaking speed, respectively. The addition of EDTA decreased cell growth and soluble phosphate production.
        25.
        2002.09 KCI 등재 서비스 종료(열람 제한)
        The isolated strain, Rhodococcus sp. EL-GT was able to degrade high phenol concentrations up to 10 mM within 24 hours in the medium consisting of 5.3 mM KH2PO4, 95 mM Na2HPO4, 18mM NH4NO3, 1mM MgSO4·7H2O, 50μM CaCl2, 0.5μM FeCl3, initial pH8.0, temperature 30℃ in rotary shaker at 200rpm. This strain was good cell growth and phenol degradation in the alkaline pH range range, and the highest in the pH range of 7 to 9. The microorganism was able to grow at the various chlorinated phenols, benzene, toluene, and bunker-C oil. As Rhodococcus sp. EL-GT was good capable of attachment on the acryl media, it would be used as microorganism to consist of biofilm in wastewater treatment.
        26.
        2002.06 KCI 등재 서비스 종료(열람 제한)
        The research was performed to compare to the biofilm characteristics and phenol removal efficiency in RBCs(Rotating Biological Contactor) using Rhodococcus sp. EL-GT(single population) and activated sludge(mixed population) as inoculum. Both reactors showed similar tendency on variations of dry weight, thickness and dry density of biofilm. However, the growth of biofilm thickness in 3 and 4 stage of single population reactor has sustained longer than that of the mixed population reactor. Unlike the mixed population reactor, the dry density of biofilm in the single population reactor had a difference between 1, 2 stage and 3, 4 stage. The single population reactor was stably operated without the decrease of phenol removal efficiency in the range of pH 6~9 and 15mM phenol was completely degraded in these pH ranges. But in case of the mixed population reactor, the phenol degradability was dramatically decreased at over 5mM phenol concentration because of the overgrowth and detachment of its biofilm.
        27.
        2002.03 KCI 등재 서비스 종료(열람 제한)
        A biosurfactant-producing microorganism was isolated from activated sludge by enrichment culture when grown on a minimal salt medium containing n-hexadecane as a sole carbon source. This microorganism was identified as Pseudomonas sp. and it was named Pseudomonas sp. EL-G527. It's optimal culture condition is 2% n-hexadecane, 0.2% NH4NO3, 0.3% KH2PO4, 0.3% K2HPO4, 0.02% MgSO4ㆍ7H2O, 0.0025% CaCl2ㆍ6H2O, 0.0015% FeSO4ㆍ7H2O in 1ℓ distilled water and initial pH 7.0. Cultivation was initiated with a 2% inoculum obtained from starter cultures grown in 30 ㎖ of the same medium in 250 ㎖ flask. They were cultivated at 30 ℃ in reciprocal shaking incubator and the highest biosurfactant production was observed after 4 days.
        28.
        2002.01 KCI 등재 서비스 종료(열람 제한)
        An antimicrobial substance-producing microorganism was isolated from soil samples. Based of the taxonomic characteristics of its morphological, cultural, physiological properties and 16s rRNA sequence alignment, this microorganism was identified as Pseudomonas aeruginosa, and we named Pseudomonas aeruginosa EL-KM. The optimal culture condition for production of antimicrobial substance was 1% mannitol, 0.4% yeast extract, 0.5% Nacl, 0.2% K₂SO₄, 100μM MgSO₄.7H2O, 10μM CaCl2.$2H_2O$, 1μM $FeSO_4$.7H2O, 1μM MnSO4.$4-5H_2O$, initial pH 7 and 200 rpm at 30℃. The purification of the antimicrbial substance was performed by silica gel column chromatographys, and fraction with TLC $R_f$ 0.77 value represented good antimicrobial activity. The crude antimicrbial substance was stable within a pH range of 3-10 and temperature range of 4°C-121°C autoclaving. This crude antibacterial substance acted as bacteriolytic agent against Vibrio cholerae non-Ol ATCC 25872, and also exhibited excellent properties, when the substance was demonstrated against many other gram-positive, gram-negative bacteria, yeast and fungi.
        29.
        1997.10 KCI 등재 서비스 종료(열람 제한)
        Microorganisms capable of degrading trichloroethylene(TCE) using phenol as a induction substrate were isolated from industrial effluents and soil. The strain MS-64K which had the highest biodegradability was identified as the genus Micrococcus. The optimal conditions of medium for the growth and biodegradation of trichloroethylene were observed as follows; the initial pH 7.0, trichloroethylene 1,000ppm as the carbon source, 0.2% (NH_4)_2SO_4 as the nitrogen source, respectively. Lag period and degradation time on optimal medium were shorter than those on isolation medium. Growth on the optimal medium was increased. Addition of 0.1% Triton X-100 increased the growth rate of Micrococcus sp. MS-64K, but degradation was equal to optimal medium. Trichloroethylene degradation by Micrococcus sp. MS-64K was shown to fit logarithmic model when the compound was added at initial concentration of 1,000ppm.
        30.
        1997.10 KCI 등재 서비스 종료(열람 제한)
        Microorganisms producing bioemulsifier were isolated from the sea water in Pusan coastal area. The isolated strain which had the highest emulsification activity and stability was identified as the genus Acinetobacter from the results of morphological, cultural and biochemical tests and named Acinetobacter sp. EL-C6 for convenience. The compositions of optimum medium for emulsification of crude oil by Actnetobacter sp. EL-C6 were crude oil 2.0%, NH_4NO_3 0.2%, K_2HPO_4 0.01%, MgSO_4·7H_2O 1.0%, CaCl_2·2H_2O 0.1% and NaCl 3.0% at initial pH 7.5 and 30℃, respectively. The cultivation for emulsification of crude oil was carried out in 500㎖ shaking flask containing 100㎖ of the optimum medium at 30℃. The highest emulsification was observed after 5 days. The utilization on the various hydrocarbon of the Acinetobacter sp. EL-C6 showed that utilization of n-alkane compounds were better than that of aromatic compounds. Among the petroleum compounds, crude oil was best utilized by the Actnetobacter sp. EL-C6.
        31.
        1997.08 KCI 등재 서비스 종료(열람 제한)
        The biodegradable characteristics of poly-β-hydroxybutyrate(PHB) film by fungi and soil burial are investigated. As the results of the American Standards for Testing and Materials(ASTM) method, the growth of Aspergillus niger was apparent on the PHB containing plate. This suggests that PHB was utilized as the sole carbon source by Aspergillus niger and ASTM method may have applications as measuring means of biodegradability of polyhydroxyalkanoic acid(PHA). PHB film was studied by monitoring the time-dependant changes in weight loss of PHB film under 30℃ and relative humidity 80 % during pot-test. As the results of pot-test, PHB film was decomposed about 87 % in 30 days by soil microorganisms. PHB film was more slowly degraded than PHB/HV film.
        32.
        1997.04 KCI 등재 서비스 종료(열람 제한)
        The bacterial strains, which utilizes 2,4,4`-trichloro-2`-hydroxydiphenyl ether(TCHDPE) as a sole carbon source, were isolated by selective enrichment culture from soil samples of industrial waste deposits. The bacterium that showed the highest biodegradation activity was designated as EL-047R. The isolated strain EL-047R was identified as the genus Pseudomonas from the results of morphological, cultural, and biochemical tests. The optimum conditions of medium for the growth and the degradation of TCHDPE were TCHDPE 500 ppm, (NH_4)_2SO_4 0.1% as the nitrogen source, initial pH 7.0±0.1, and 37℃, respectively. In this conditions, the degradation rate of TCHDPE was about 97%. Pseudomonas sp. EL-047R was tested for resistance to several metal compounds and antibiotics. Pseudomonas sp. EL-047R was moderately grown to Cd(NO_3)_2, ZnCl_2, AgSO_4, CuSO_4 and HgCl_2. This strain was sensitive to rifampicin and kanamycin but resistant to ampicillin, penicillin, tetracyclin and chloramphenicol. Pseudomonas sp. EL-047R was grown structurally related compounds and potential metabolites of TCHDPE, and has the stability on TCHDPE biodegradation.
        33.
        1997.04 KCI 등재 서비스 종료(열람 제한)
        In order to find the most fitted biodegradation model, biodegradation kinetics model to the initial phenol and p-cresol concentrations were investigated and had been fitted by the linear regression. Bacteria capable of degrading p-cresol were isolated from soil by enrichment culture technique. Among them, strain M1 capable of degrading p-cresol has also degraded phenol and was identified as the genus Micrococcus from the results from of taxonomical studies. The optimal conditions for the biodegradation of phenol and pcresol by Micrococcus sp. M1 were NH_4NO_3 0.05%, pH 7.0, 30℃, respectively, and medium volume 100㎖/250㎖ shaking flask. Micrococcus sp. M1 was able to grow on phenol concentration up to 14mM and p-cresol concentration up to 8mM. With increasing substrate concentration, the lag period increased, but the maximum specific growth rates decreased. The yield coefficient decreased with increasing substrate concentration. The biodegradation kinetics of phenol and p-cresol were best described by Monod with growth model for every experimented concentration. In cultivation of mixed substrate, p-cresol was degraded first and phenol was second. This result implies that p-cresol and phenol was not degraded simultaneously.
        1 2