본 연구는 관상적 가치가 뛰어난 한반도 자생식물 너도개미 자리[Minuartia laricina (L.) Mattf.]의 산업화를 위한 대량 번 식 기술을 개발하기 위해 수행되었다. 종자 번식 실험에서는 2023년 8월 16일 형태적으로 완전히 성숙한 종자를 채종하여 사용하였으며, 종자의 내부 형태를 관찰한 결과 배가 완전히 발달하여 미숙배로 인한 형태적 휴면(MD)은 없음을 확인하였 다. 또한, 종자를 증류수에 침지시켜 수분 흡수율을 조사한 결과 수분흡수 24시간 후 약 66%의 수분 흡수율을 보여 불투수성 종피에 의한 물리적 휴면(PY)도 없음을 확인하였다. 실온 (22±2℃)에서 후숙처리(Dry after-ripening)를 0, 4, 21주 실 시 후 각각 4, 10, 15, 20, 25, 30℃로 설정된 기내 발아 실험을 진행하였다. 실험의 결과, 후숙 4주 처리 후 20℃에 치상한 종자 의 발아율이 약 76%로 가장 높았다. 후숙 처리를 하지 않은 종자는 12주 내 어떠한 온도 조건에서도 발아하지 않아 생리 적 휴면(PD)으로 판단되었다. 삽목 번식 실험에서는 줄기삽목 (Stem-cutting) 방식으로 진행하였고, 루톤 분제 처리가 발근 에 미치는 영향을 조사하였다. 루톤 분제를 처리하지 않은 처리 구는 발근율과 생존율이 100%로 나타났으며, 루톤 분제가 처리 된 삽수는 이들보다 발근율과 생존율이 통계적으로 유의하게 낮았다. 따라서 너도개미자리 종자는 생리적 휴면 종자로 분류 되며, 4주간의 후숙 처리가 휴면 타파에 효과적인 것으로 확인 되었다. 또한, 너도개미자리 삽목 번식 시 별도의 발근 촉진제 처리가 필요하지 않음을 확인하였다.
Entomopathogenic fungi serve as eco-friendly alternatives to chemical pesticides. In this study, we investigate the interactions between mosquitoes and Metarhizium anisopliae JEF-157, which showed high insecticidal activity against mosquitoes, by RNA-seq analysis. RNA from mosquitoes was extracted at the median lethal time to identify changes in gene expression. The results showed 580 genes were up-regulated, while 336 genes were down-regulated in fungal treated mosquitoes. Up-regulated genes were related to metabolic and cellular processes such as cytochrome P450, DNA replication, and apoptosis. Down-regulated genes were involved in metabolism pathways such as lysosome, starch and sucrose metabolism, and fatty acid biosynthesis. These results are crucial for elucidating the mechanisms of fungal invasion and interaction in insects, providing insights for future pest management strategies.
Entomopathogenic fungi have been studied to control insect pests as an alternative to chemical insecticides. However, all fungi haven't a high virulence against pests. In this study, we compared the biological characteristics of Metarhizium anisopliae strains. First, we selected four M. anisopliae strains and compared the thermotolerance, conidial productivity, and virulence. For the thermotolerance test, conidial suspensions were exposed to 0, 30, 60, and 90 min at 45 °C. As a result, the conidial germination rates were over 95% when exposed for 0 min but, were 64, 37.7, 6, and 3% when exposed for 30 min at 45°C, respectively. To compare conidial productivity, 200g of millet were used and inoculated with a conidial suspension of 1 ml (1×107 conidia/ml). Conidial productivity was investigated after 14 days. As a result of conducting a virulence test against mealworms using a spray method, differences in virulence between strains were confirmed.
Radiation dose rates for spent fuel storage casks and storage facilities of them are typically calculated using Monte Carlo calculation codes. In particular, Monte Carlo computer code has the advantage of being able to analyze radiation transport very similar to the actual situation and accurately simulate complex structures. However, to evaluate the radiation dose rate for models such as ISFSI (Independent Spent Fuel Storage Installation) with a lot of spent fuel storage casks using Monte Carlo computational techniques has a disadvantage that it takes considerable computational time. This is because the radiation dose rate from the cask located at the outermost part of the storage facility to hundreds of meters must be calculated. In addition, if a building is considered in addition to many storage casks, more analysis time is required. Therefore, it is necessary to improve the efficiency of the computational techniques in order to evaluate the radiation dose rate for the ISFSI using Monte Carlo computational codes. The radiation dose rate evaluation of storage facilities using evaluation techniques for improving calculation efficiency is performed in the following steps. (1) simplified change in detailed analysis model for single storage cask, (2) create source term for the outermost side and top surface of the storage cask, (3) full modeling for storage facilities using casks with surface sources, (4) evaluation of radiation dose rate by distance corresponding to the dose rate limit. Using this calculation method, the dose rate according to the distance was evaluated by assuming that the concrete storage cask (KORAD21C) and the horizontal storage module (NUHOMS-HSM) were stored in the storage facility. As a result of calculation, the distance to boundary of the radiation control area and restricted area of the storage facility is respectively 75 m / 530 m (KORAD21C case), and 20 m / 350 m (NUHOMS-HSM case).
The purpose of this paper was to investigate the comparison of balance and muscle strength between dominant and non-dominant legs in adults. Thirty adults in their 20s participated in this study. The dominant and non-dominant legs were selected based on the dominant hands of the target. The subject's muscle strength of legs was measured with Nicholas MMT, and the balance was measured with BIO-Rescue. We compared the dominant and non-dominant legs based on the results. The result, indicated no statistical difference on balance and muscle strength between dominant and non-dominant legs(p>.05). The results of this study will be helpful in setting the effective treatment direction and treatment level, and in controlling posture, balance and motor function.
We report the structural, morphological and magnetic properties of the Ni70Mn30 alloy prepared by Planetary Ball Mill method. Keeping the milling time constant for 30 h, the effect of different ball milling speeds on the synthesis and magnetic properties of the samples was thoroughly investigated. A remarkable variation in the morphology and average particle size was observed with the increase in milling speed. For the samples ball milled at 200 and 300 rpm, the average particle size and hence magnetization were decreased due to the increased lattice strain, distortion and surface effects which became prominent due to the increase in the thickness of the outer magnetically dead layer. For the samples ball milled at 400, 500 and 600 rpm however, the average particle size and hence magnetization were increased. This increased magnetization was attributed to the reduced surface area to volume ratio that ultimately led to the enhanced ferromagnetic interactions. The maximum saturation magnetization (75 emu/g at 1 T applied field) observed for the sample ball milled at 600 rpm and the low value of coercivity makes this material useful as soft magnetic material.
It has been proved that agroinfiltration-based temporary expression of coatomer subunit alpha (COPA) gene from Tetranychus urticae hairpin RNA induces RNA interference (RNAi) and lethality to T. urticae. To establish detailed protocols for agroinfiltration, the efficiency of agroinfiltration to the soybean and kidney bean was determined with respect to different Agrobacterium delivery methods (sea sand, carborundum and syringe) and the spacial expression patterns of hairpin RNA was investigated following Agrobacterium delivery. Sea sand and syringe showed the highest expression level in soybean and kidney bean, respectively. Considering the resulting tissue damage, syringe appeared the best choice for agroinfiltration in both soybean and kidney bean. The apical region of a leaf showed more relative expression levels in both soybean and kidney bean compared to the basal region. Following agroinfiltration, adjacent untreated leaves were determined to express hairpin RNA though the expression level was low, suggesting that hairpin RNA can be translocated to other leaves. In conclusion, Agrobacterium delivery by syringe and use of whole leaf were recommended for T. urticae bioassay following agroinfiltration.
In our previous study, COPA (coatomer subunit alpha) gene from the two-spotted spider mite, Tetranychus urticae, exhibited RNA interference (RNAi)-based lethality when its double-stranded RNA (dsRNA) was systemically delivered via multi-unit chambers or its hairpin RNA was in planta-expressed by agroinfiltration. The cumulative mortality of T. urtcae was 55.0 ±14.2% in soybean plants agroinfiltrated with COPA gene. To investigate the temporal expression profiles of hairpin RNA following agroinfiltration, the amount of hairpin RNA expressed in plants was quantified over time by quantitative real-time PCR. Relative transient expression levels of T. urticae COPA hairpin RNA was highest at 46 h post-agroinfiltration and the extent of COPA gene knockdown was lowest at 12 h post-infestation on soybean plants. To investigate small interference RNA (siRNA) profiling, northern blot assay is currently under progress.
Expression of hairpin RNA corresponding to the part of COPA transcript was done by agroinfiltration in soybean plants and was confirmed by qRT-PCR. In a pot experiment, T. urticae was infested on agroinfiltrated soybean plants and T. urticae mortality was observed and compared with control plants overtime. Significantly higher mortalities of T. urticae were observed in the COPA-agroinfiltrated soybean plants from post-infestation day 2 (15 ±5%), day 4 (50 ±10 %). At post-infestation day 6, mortality reached to (70 ± 15%). To validate the observed COPA silencing effect in T. urticae fed on the agroinfiltrated soybean plant expressing COPA hairpin RNAs, qRT-PCR analysis was performed. The transcript level of COPA gene was decreased in T. urticae fed on agroinfiltrated soybean plants expressing COPA hairpin RNA from post-infestation day 2. At post-infestation day 2, 4 and 6, COPA transcript levels were reduced by 23.8, 20.7 and 18.8 fold, respectively compared to post-infestation day 1 (control). The results obtained in this study also ruled that the plant mediated production and uptake of silencing (dsRNAs/siRNAs) is an effective way to trigger RNAi in the T. urticae.
The purpose of this study is to analysis of muscle fatigue in the upper trapezius and splenius capitis muscles according to therapy table height variation. The subjects were consisted of 15 healthy adults(10 males, 5 females) who had no medical history of neurological and musculoskeletal problems. In experiment, wireless electrode EMG system was measured for each the upper trapezius and splenius capitis muscles during the treatment performed on table. the differences in the muscle fatigue was compared for 4 types of table height(-6cm, -3cm, 0, +3cm from elbow in 90° flexion position). Muscle fatigue according to therapy table height were significant difference except for left upper trapezius. And muscle fatigue of right upper trapezius and splenius capitis showed significant decrease in +3cm table height compared to -6cm table height(p<.05). Muscle fatigue of right upper trapezius and splenius capitis were the highest in -6cm table height, but those were the lowest in +3cm table height. This study propose to change therapy table height higher than +3cm from elbow in 90° flexion position, if you hope to reduce muscle fatigue.
The physiology of parasitic wasp control of their lepidopteran hosts' not only includes injecting their egg but also various factors such as symbiotic virus. This study was focused on the investigation of sophisticated interaction between parasitoid (Diadegma fenestrale) and their host (Plutella xylostella) in P. xylostella larva at transcriptome level, to check whether it is parasitized or not. Short-read deep sequencing method (Hiseq2000) was used for the transcriptome analysis. De novo assembly of cDNA sequence data generated 196,081 contigs between 201bp and 15,853bp in length. Some detoxification enzymes such as cytochrome P450 and Immune-related genes such as antimicrobial peptides were up-regulated after parasitism. Expression of symbiotic ichnovirus genes was detected in parasitized larvae with 55 contigs identified from five ichnovirus gene families including vankyrin, viral innexin, repeat elements, a cysteine-rich motif, and polar residue rich protein. This investigation provides a detailed information on differential expression of P. xylostella larval genes and symbiotic ichnovirus genes following parasitization.
High-rank coals are limited, while low-rank coals are abundant. However, the low-rank coals needs upgradation so as to improve their quality. If not, the utilization of low-rank coals will lead to many operational difficulties. As this study was made in South Korea, this article discusses the energy and coal scenario of South Korea. The critique discusses the concerns of utilizing low-grade coal and the need for upgrading low-grade coal. The article also briefly discusses the currently practiced low-rank coal upgradation techniques. Also, the review paper suggests some best upgradation techniques.
Rice blast (Magnaporthe oryza B.) is one of the most widespread and devastating diseases of rice. Screening of valuable genetic resources harboring resistance genes is one of the most efficient approaches against blast disease. Because the bioassay to rice blast in the field shows high variations, this study has performed to provide DNA profiles in the accessions of diverse countries using major blast resistant genes linked markers, identified and mapped in different genotypes of rice. Because durable resistance to blast is controlled by a combination of major resistance genes, we surveyed the distribution of blast resistant genes in the 1,500 accessions using major 12 blast resistance genes linked markers. These resistant genes found that the frequency distribution of Pi-39 (66.9%), Pik-m (41.9%), Pit (40.5%), Pii (21%), Pib (19.3%), Pi-d(t)2 (12.7%), but Pita, Pita/Pita-2, Pik, Piz-t, Pi5 genes were identified in less than 10% frequency. Most of accessions contain from 1 to 4 different resistant genes. Pi39 and Pik-m genes amplified in the 69.1% and 51.7% among 356 Korean accessions, Pi39 (79.6%) and Pib (55.8%) in 113 China, Pit (80.6%) and Pib (32%) in 103 Philippines, respectively. In this study, we evaluated the blast resistance degree and the information about the distribution of rice blast resistant genes in rice germplasm. This study will help to develop effective strategies for managing rice blast disease in rice germplasm.