본 연구에서는 국내에서 판매되는 24개 건어포 및 조미 건어포 제품의 종 판별 및 표시사항 준수 여부를 평가했 다. 이러한 수산가공품에 사용된 원재료의 종판별을 위해 cytochrome c oxidase subunit I 및 cytochrome b 유전자 의 염기서열을 분석하여 NCBI GenBank 및 BOLD 데이 터베이스에 등록되어 있는 생물종의 염기서열과 비교 후 계통 분석을 수행했다. 분석 결과 13개 종(Hyporhamphus quoyi, Gadus chalcogrammus, Lophius litulon, Conger myriaster, Paramonacanthus pusillus, Hyporhamphus sajori, Gadus macrocephalus, Hoplobrotula armata, Callionymus meridionalis, Liparis tanakae, Dosidicus gigas, Lagocephalus cheesemanii, and Takifugu vermicularis)이 확인되었다. 일반 명(장어, 오징어 등)을 포함할 경우 16개 제품(66.7%)에서 표시사항과 판별된 종 간에 불일치가 확인되었으며, 일반 명을 제외할 경우 불일치 비율은 41.7%로 감소했다. 식품 유형별로는 조미건어포 제품(n=20, 70%)에서 건어포 제품 (n=4, 50%) 보다 높은 비율의 불일치 비율이 관찰되었다. 원산지별 분석 결과 특정 국가와 불일치 비율과의 상관성 은 확인할 수 없었다. 이러한 연구 결과는 건포류 제품의 주기적 모니터링 수행 및 수산물의 국명 표시 선을 위한 기초자료로 쓰일 수 있을 것이다.
Moringa oleifera, a versatile plant, has been traditionally used to treat various ailments and is gaining scientific attention due to its potential as a medicine. Native to the Indian subcontinent, it is widely grown in tropical and subtropical regions, thriving in Asia, Africa, and South America, especially in arid climates. This study explores the antioxidant potential of Moringa oleifera leaf extract (MOLE), employing a comprehensive screening approach with various solvents to identify the most effective extraction method. Initial experiments assessed antioxidant efficacy and yield using distilled water (D.W.), 95% ethanol, and 95% methanol. Among these, 95% ethanol extract demonstrated superior antioxidant activity, confirmed through assays such as 2,2-diphenyl-1-14 picrylhydrazyl (DPPH) radical scavenging assay, total polyphenol content analysis, and reducing power assay. In addition, with the 95% ethanol MOLE, a higher extraction efficiency was yielded compared to other solvents, making it the most effective for large-scale preparation. HPLC analysis revealed the presence of key bioactive compounds, including ellagic acid, rutin, Q-3-O, quercetin, and kaempferol. Results revealed that MOLE, prepared using 95% ethanol, exhibited remarkable antioxidant properties, attributed to its rich polyphenolic content. This research underscores the therapeutic potential of MOLE as a natural antioxidant source and highlights the importance of solvent optimization in phytochemical extractions.
In this study, an simultaneous LC-MS/MS multi-residue analytical method was developed and validated for the residues of six neonicotinoid insecticides (acetamiprid, clothianidin, dinotefuran, imidacloprid, thiacloprid, and thiamethoxam) in honey. Sample preparation included a combination of QuEChERS extraction kit and liquid-liquid extraction method to effectively extract pesticide components from the honey matrix and optimized analytical conditions to achieve high sensitivity and selectivity. The limits of detection (LOD) and the limits of quantitation (LOQ) were set in the range of 6-15 ng/mL and 19-44 ng/mL, respectively and the correlation coefficient (R²) was greater than 0.99, confirming good linearity. In addition, the intra-day recoveries for each pesticide were 75-104%, and the coefficient of variation (CV) was less than 20%, which met the guideline recommended by the Ministry of Food and Drug Safety. The LC-MS/MS method developed in this study is expected to be used as a multi-residue analysis method for 6 neonicotinoid pesticides in honey.
Thyroid scanning using technetium-99m (99mTc) is the gold standard for diagnosing feline hyperthyroidism. In cats with an overactive thyroid, a thyroid scan is the most appropriate imaging technique to detect and localize any hyperfunctional adenomatous thyroid tissue. In this study, the pharmacological properties of the Technekitty injection (Tc-99m), developed as a diagnostic agent for feline hyperthyroidism using 99mTc as an active ingredient, were tested in FRTL-5 thyroid follicular cell line and ICR mice. The percentage of cell uptake of the Tc-99m in FRTL-5 thyroid cells was 0.182 ± 0.018%, which was about 6 times higher compared to Clone 9 hepatocytes. This uptake decreased by 38.2% due to competitive inhibition by iodine (sodium iodide). In tissue distribution tests by using ICR mice, the highest distribution was observed in the liver, kidneys, spleen, lungs, and femur at 0.083 hours after administration, and this distribution decreased as the compound was excreted through the kidneys, the primary excretory organ. Maximum distribution was confirmed at 1 hour in the small intestine, 6 hours in the large intestine, and 2 hours in the thyroid gland. Additionally, the total amount excreted through urine and feces over 48 hours (2 days) was 78.80% of the injected dose, with 37.70% (47.84% of the total excretion) excreted through urine and 41.10% (52.16% of the total excretion) through feces. In conclusion, the Tc-99m has the same mechanism of action, potency, absorption, distribution, metabolism, and excretion characteristics as 99mTc used for feline hyperthyroidism in the United States, Europe, and other countries, because the Technekitty injection (Tc-99m) contains 99mTc as its sole active ingredient. Based on these results, the Technekitty injection (Tc-99m) is expected to be safely used in the clinical diagnosis of feline hyperthyroidism.
Background: Platelet-derived growth factor receptor alpha (PDGFRα) is essential for various biological processes, including fetal Leydig cell differentiation. The PDGFRαEGFP mouse model, which expresses an eGFP fusion gene under the native Pdgfrα promoter, serves as a valuable resource for exploring PDGFRα’s expression and function in vivo. This study investigates PDGFRα expression in adult testicular cells using PDGFRαEGFP mouse model. Methods: Genotyping PCR and gel electrophoresis were used to confirm the zygosity of PDGFRαEGFP mice. Histological examination and fluorescence imaging were used to identify PDGFRα expression within testicular tissue. Immunohistochemical analysis assessed the co-expression of PDGFRα with c-Kit, ANO-1, and TASK-1 in testicular cells. Results: Genotyping confirmed the heterozygous status of the mice, which is crucial for studies due to the embryonic lethal phenotype observed in homozygotes. Histological and fluorescence imaging revealed that PDGFRα+ cells were primarily located in the interstitial spaces of the testis, specifically within Leydig cells and peritubular myoid cells (PMCs). Immunohistochemical results showed PDGFRα co-localization with c-Kit and ANO-1 in Leydig cells and a complete co-localization with TASK-1 in both Leydig cells and PMCs. Conclusions: The findings demonstrate specific expression of PDGFRα in Leydig cells and PMCs in adult testicular tissue. The co-expression of PDGFRα with c-Kit, ANO-1, and TASK-1 suggests complex regulatory mechanisms, possibly influencing testicular function and broader physiological processes.
Background: Leydig cells, crucial for testosterone production, express ion channels like ANO1 that influence hormone secretion. This study investigates the expression and role of the Tandem of P domains in a weak inward rectifying K+ channel-related Acid-Sensitive K+-1 (TASK-1) channel in these cells, exploring its impact on testicular function and steroidogenesis. Methods: TASK-1 expression in Leydig cells was confirmed using immunostaining, while RT-PCR and Western Blot (WB) validated its expression in the TM3 Leydig cell line. The effect of a TASK-1 channel blocker on cell viability was assessed through live/dead staining and MTT assays. Additionally, the blocker’s effect on testosterone secretion was evaluated by measuring testosterone levels. Results: Immunohistochemical analysis revealed a predominant presence of TASK- 1, along with c-Kit and ANO-1, in Leydig cells adjacent to seminiferous tubules and also in Sertoli and spermatogenic cells. Expression levels of TASK-1 mRNA and protein were significantly higher in TM3 Leydig cells compared to TM4 Sertoli cells. In addition, blocking TASK-1 in TM3 cells with ML365 induced cell death but did not affect LHinduced testosterone secretion. Conclusions: These findings suggest that TASK-1 in Leydig cells is crucial for their viability and proliferation, highlighting its potential importance in testicular physiology.
When exposed to different types of bacteria in the oral cavity, denture based resins are prone to bacteria attachment. The purpose of this study was to investigate the physical, biological, and antimicrobial properties of denture base resins coated with Peony extract (200, 400, and 600 μg/mL). Specifically, the surface properties (microhardness, contact angle, and color change of the coated specimens), cell cytotoxicity (measured using MTT assay), and antimicrobial activity (against S. mutans (Streptococcus mutans) and C. albicans (Candida albicans) using a growth inhibition assay) were evaluated. The polyphenol content was measured using ultraviolet-visible (UV-vis) spectrometry. The experimental groups (specimens coated with Peony extract) and a control group (specimens coated without Peony extract) were statistically compared using a one-way analysis of variance and Tukey’s post-hoc tests. No statistically significant differences in surface properties or cell cytotoxicity were observed, which demonstrated their biocompatibility. Conversely, a statistically significant difference in antimicrobial activity was observed between the experimental and control groups after 48 h. This confirms the antimicrobial activity of the denture base resin coated with Peony extract and demonstrates that it is a promising dental material for preventing stomatitis.
Yam is an important tuber crop nutritionally, socio-culturally, and an income generator for many Nigerian. This explains its high demand both locally and internationally, causing increased production as Nigeria leads world production with about 45.41 million metric tons annually. The peculiarity of yam production in Nigeria entails lower yield, high cost of production, and post-harvest losses. Yam produced in Nigeria falls far below the potential crop yield, therefore, it is essential to close these yield gaps through the provision of solutions to the different constraints that hamper sustainable yam production. Despite the challenges, there is still insufficient information on the impact of policies, weeds, pests, and diseases which constitute major constraints. Nigerian farmers mostly utilize indigenous cultural approaches to manage yam production. Their goal of production is to produce yam cultivars that are suitable mainly for food products leading to the neglect of other cultivars. Few selected institutions with a yam mandate have been working on improving the production of D. rotundata and D. alata through breeding yam cultivars suitable for consumption and resilient against pests and diseases. However, more extensive studies should focus on breeding programs for yam resilient under drought and flooding, with peculiar physicochemical properties that give unique textual qualities considered in pounded yam and other yam food products. In this review paper, the significance and limitations of yam production in Nigeria and her efforts to achieve sustainable production are extensively studied.
Maize is an important cereal crop widely grown in all of Nigeria’s agroecology based on its economic and food values. This has led to its optimum production with Nigeria ranking top 12th maize producer in the world. Presently, the fall armyworm (FAW), Spodoptera frugiperda is considered a potential threat to food security in Nigeria due to its devastating feeding pattern on maize and its wide host range. Its invasive and high dispersal nature enhances its spread from its first reported state (Oyo) in early 2016 to the entire 36 states of Nigeria by the year 2018. It accounts for averagely an estimated 34% or more yield reduction in Nigeria’s maize field, hence, a need for an efficient management approach. Although most farmers rely on the use of insecticide, it is found ineffective because of the inaccessible location of FAW in maize. This study was carried out to investigate the different management approaches adopted in Nigeria to control FAW and its impact on the insect pest population. Conventional measures such as planting improved seeds, avoidance of late planting, and polyculture to increase the natural enemy’s population have been used but with limited control of FAW. Maize lines with aflatoxin resistance or transgenic Bt-maize are found resistant to FAW. Botanicals such as neem extract lowered the percentage of leaf area damage, incidence of FAW larva infestation, and the number of larvae. It is difficult to curtail the menace of FAW through one control method, hence, the need for an integrated approach
Soybean is an important crop widely grown in the northern region of Nigeria for human and animal consumption. Commercial production of soybean in Nigeria has existed for eight decades. Current malnutrition and nutrient health problems in Nigeria warranted the introduction of high nutritive and affordable food sources such as soybean in the Nigerian diet. The high demand for soybean and its products has led to the rise in the cultivation of soybean in Nigeria. Although an increase in production has been recorded, the region of production has failed to achieve the potential yield per hectare. In improving soybean production in Nigeria, it is paramount to understand the factors that contribute to the process of production. This review paper provides information on factors affecting soybean production across the regions of production in Nigeria. The identified factors responsible for the yield gap include the impact of climate change on the agroecology shift, nutrient depletion and soil fertility, sowing date, the emergence of pests and diseases, and limited improved soybean cultivars. Adoption of improved soybean variety suitable in agroecology and sowing, at the appropriate sowing date by Nigerian farmers, can guarantee optimum soybean production. Further soybean breeding improvement studies are needed to provide more improved varieties with superior performance in Nigeria’s agroecology to achieve yield potential.
The role of transient receptor potential vanilloid receptor-1 (TRPV1) has been primarily investigated in pain sensory neurons. Relatively, little research has been performed in testicular cells. TRPV1 is abundantly expressed in Leydig cells of young adult mice. This study was conducted to determine the role of the TRPV1 channel in Leydig cells. TRPV1 modulators and testosterone were treated to the mouse Leydig cell line TM3 cells for 24 h. Capsaicin, a TRPV1 activator, dose-dependently induced cell death, whereas capsazepine, a TRPV1 inhibitor, inhibited capsaicin-induced cell death. Testosterone treatment reduced capsaicin-induced cell death. High concentrations of testosterone decreased TRPV1 mRNA and protein expression levels. However, TRPV1 modulators did not affect testosterone production. These results showed that capsaicin induced cell death of Leydig cells and that testosterone reduced capsaicininduced cell death. Our findings suggest that testosterone may regulate the survival of Leydig cells in young adult mice by decreasing the expression level of TRPV1.