많은 연구에 따르면 Tenebrio molitor은 유충 단계에서 플라스틱을 섭취할 수 있다고 보고되었다. 이 연구의 목적은 T. molitor 유충의 성장과 발달에 발포폴리스티렌 섭취가 미치는 영향을 조사하는 것이다. 밀기울을 섭취한 유충의 성장률은 발포폴리스티렌을 섭취한 유충의 성장률보다 더 좋았고(p < 0.001) 발포폴리스티렌을 섭취한 유 충의 번데기로 전환되는 기간은 밀기울을 섭취한 유충의 번데기로 전환되는 기간보다 더 빨랐다(p < 0.001). 하지만 두 처리구간 생존율은 유의미한 차이가 없었다(p = 0.786). 이 결과에 따르면 발포폴리스티렌을 섭취한 유충은 체중 감소와 짧은 발육기간이 특징이지만 생존하는 것에는 문제가 없었다. 따라서 우리는 T. molitor가 플라스틱 폐기물 의 지속 가능하고 친환경적인 제거를 위한 주요 자원이라는 결론을 내렸다.
In this study, laser-induced graphene oxide (LIGO) was synthesized through a facile liquid-based process involving the introduction of deionized (DI) water onto polyimide (PI) film and subsequent direct laser irradiation using a CO2 laser (λ = 10.6 μm). The synthesized LIGO was then evaluated as a sensing material for monitoring changes in humidity levels. The synthesis conditions were optimized by precisely controlling the laser scribing speed, leading to the synthesis of LIGO with different structural characteristics and varying oxygen contents. The increased number of oxygen-containing functional groups contributed to the hydrophilic properties of LIGO, resulting in a superior humidity sensing capabilities compared with laser-induced graphene (LIG). The LIGO-based sensors outperformed LIG-based sensors, demonstrating approximately tenfold higher sensing responsivity when detecting changes at each humidity level, along with 1.25 to 1.75 times faster response/recovery times, making LIGO-based sensors more promising for humidity-monitoring applications. This study demonstrated laser ablation in a renewable and natural precursor as an eco-friendly and energy-efficient approach to directly synthesize LIGO with controllable oxidation levels.
Recently, it is demonstrate that the invertebrates have a immune memory, called Immune priming (IP). It was partially studied that the IP is mainly regulated by epigenetic modification. Here, to understand the IP on antimicrobial peptides (AMPs) production, we investigated larval mortality and time-dependent expression patterns of AMP genes in T. molitor larvae challenged with E. coli (two-times injection with a one-month interval). Interestingly, the results indicate that the higher and faster expression levels of most AMP genes were detected compared to the non-primed T. molitor larvae. Our results may used to improve the understanding of mechanisms of invertebrate immune memory.
Pellino, a highly conserved E3 ubiquitin ligase, is known to mediate ubiquitination of phosphorylated Interleukin-1 receptor-related kinase (IRAK) homologs in Toll signaling pathway. To understand the immunological function of TmPellino, we screened the knockdown efficiency of TmPellino by injecting TmPellino-specific dsRNA into T. molitor larvae. Subsequently, we investigated the larval mortality and the tissue-specific expression patterns of antimicrobial peptide (AMP) genes against microbial challenges. Interestingly, the results indicate that the expression of many AMP genes was upregulated in the Malpighian tubules of TmPellino-silenced T. molitor larvae. This study may provide basic information to understand how Tmpellino regulates AMPs production in T. molitor.
Tumor necrosis factor receptor-associated factor (TRAF) is known to regulate antimicrobial peptides (AMPs) production in mammals. Here, to understand the immunological function of TmTRAF against microbial challenge, the induction patterns of TmTRAF against microbial infection was investigated by qRT-PCR in the whole-body and tissue of young larvae. In addition, the effects of TmTRAF RNAi on larval mortality and expression of 15 AMP genes in response to microbial infection were investigated. Our studies may help to understand the basic role of AMP production.
Tube, an intracellular protein of the Toll-pathway, forms a complex with Pelle and MyD88, and regulates a signal transduction to activate NF-κB in Drosophila. To understand the antimicrobial function of TmTube, the induction patterns of TmTube were investigated at 3, 6, 9, 12, and 24 h-post injection of pathogens into 10th to 12th instar larvae. In addition, we investigated the effects of TmTube RNAi on larval mortality and tissue specific AMP expression in response to microbial challenge. Our results will provide a basic information to elucidate the immunological function of TmTube
Pelle, a serine/threonine kinase, is an intracellular component of the Toll pathway and is involved in antimicrobial peptides (AMPs) production due to pathogenic infection. It is known that the Pelle phosphorylates Cactus and activates the NF-κB signaling pathway in Drosophila, but it is not studied in Tenebrio molitor. In this study we investigated the tissue-specific expression patterns of the Pelle following pathogenic infection at 3, 6, 9, 12, and 24 hours. Additionally, larval mortality and AMP expression against microbial injection were investigated in dsPelle-treated T. molitor larvae. Our results may help to understand the antimicrobial function of TmPelle.
In insects, the glutathione S-transferase is initiated in both the detoxification process and the protection of cellular membranes against oxidative damage. In this study, we identified the open reading frame (ORF) sequence of GST-iso1 and 2 from Tenebrio molitor (TmGST-iso1 and 2). To investigate the expression patterrns of TmGST-iso1 and 2 in response to herbicide, 0.06, 0.6, and 6 ㎍/㎕ of butachlor (FarmHannong, Seoul, South Korea) was challenged into T. molitor larvae, resulting that the TmGST-iso1 were highly induced at 3 and 24 h-post injection. Whereas, the highest expression of TmGST-iso2 was detected at 24 h after treatment. This study may contribute to basic information about the detoxifying activities of T. molitor.
It is well known that the JNK pathway regulates AMP production against pathogenic infection in both vertebrates and invertebrates. Tenebrio molitor hep (Tmhep) is an homolog of MAP kinase kinase in mammals. Here, we investigate the immunological function of Tmhep in responses in microbial infection using RNA interference technology. The results showed that silencing of Tmhep increased the larval mortality against microbial challenge, as well as reduced AMP production compared to the control group (dsEGFP-treated group). Conclusively, Tmhep plays an critical role in antimicrobial defense in T. molitor larvae.
Porous carbon nanofiber (CNF) electrodes for supercapacitors were prepared by using polyacrylonitrile (PAN) and cucurbituril (CB), which is a macrocyclic compound comprising glycoluril units containing hollow cores. Mixture of PAN and CB in dimethyl sulfoxide was electrospun, and thermally treated to produce CNF electrodes. Their thermal stability, surface morphology, carbon microstructures, and surface porosity were investigated. Electrochemical properties were measured using three-electrode with synthesized CNFs without further treatment as a working electrode and 1 M Na2SO4 as an electrolyte. CNFs derived from PAN and CB exhibited a high specific capacitance of 183.5 F g− 1 and an energy density of 25.4 Wh kg− 1 at 0.5 A g− 1 with stable cyclic stability during 1000 cycles, which is significantly higher than those for CNFs derived from PAN only. This demonstrated that the introduction of CB successfully improved the energy storage performance of CNF electrodes.
If radioactive plumes are released outside due to loss of containment building integrity during a nuclear power plant accident, these materials might travel with the wind, affecting both the surrounding environment and neighboring countries. In China, most nuclear power plants are located on the eastern coast. Consequently, a radioactive plume generated during an accident could negatively impact even the western part of the Korean Peninsula due to westerly winds. To detect such problems early, respond quickly, and protect residents, a system that can monitor aerial radiation under normal conditions is needed. Additionally, a detection system that can operate in real-time in an emergencies conditions is required. The current method for aerial radiation measurement takes environmental radiation data from a monitoring post 1.5 m above the ground and converts it to altitude. To measure actual aerial radiation, an expansive area is surveyed by aircraft. However, this approach is both time-consuming and expensive. Thus, to monitor radioactive plumes influenced by environmental factors like wind, we need a radiation detector that can gauge both radioactivity and directionality. In this study, we developed a radiation detector capable of assessing both the radioactivity and directionality of a radioactive plume and conducted its performance evaluation. We miniaturized the radiation detector using a CZT (Cadmium Zinc Telluride) sensor, enabling its mounting on unmanned aerial vehicles like drones. It is configured with multi-channels to measure directionality of a radioactive plumes. For performance evaluation, we positioned two-channel CZT sensors at 90 degrees and measured the energy spectrum for angle and distance using a disk-type radioactive isotope. Using this method, we compared and analyzed the directionality performance of the multi-channel radiation detector. We also confirmed its capability to discern specific radioactivity information and nuclide types in actual radioactive plumes. Our future research direction involves mounting the multi-channel radiation detector on a drone. We aim to gather actual aerial radiation data from sensors positioned in various directions.
The domestic Pressurized Heavy Water Reactor (PWHR) nuclear power plant, Wolsong Unit 1, was permanently shut down on December 24, 2019. However, research on decommissioning has mainly focused on Pressurized Water Reactors (PWRs), with a notable absence of both domestic and international experience in the decommissioning of PHWRs. If proper business management such as radiation safety and waste is not performed, it can lead to increased business risks and costs in decommissioning. Therefore, the assessment of waste volume and cost, which provide fundamental data for the nuclear decommissioning process, is a crucial technical requirement before initiating the actual decommissioning of Wolsong Unit 1. Decommissioning radiation-contaminated structures and facilities presents significant challenges due to high radiation levels, making it difficult for workers to access these areas. Therefore, technology development should precede decommissioning process assessments and safety evaluations, facilitating the derivation of optimal decommissioning procedures and ensuring worker safety while enhancing the efficiency of decommissioning operations. In this study, we have developed a program to estimate decommissioning waste amounts for PHWRs, building upon prior research on PWR decommissioning projects while accounting for the specific design characteristics of PHWRs. To evaluate the amount of radioactive waste generated during decommissioning, we considered the characteristics of radioactive waste, disposal methods, packaging container specifications, and the criteria for the transfer of radioactive waste to disposal operators. Based on the derived algorithm, we conducted a detailed design and implemented the program. The proposed program is based on 3D modeling of the decommissioning components and the calculation of the Work Difficulty Factor (WDF), which is used to determine the time weighting factors for each task. Program users can select the cutting and packaging conditions for decommissioning components, estimate waste amount based on the chosen decommissioning method, and calculate costs using time weighting factors. It can be applied not only to PHWRs, but also to PWRs and non-nuclear fields, providing a flexible tool for optimizing decommissioning process.
부추속은 수선화과에 속하며 약 1000여종에 이른다. 좀부 추는 자생 부추속에 속하며 식용이 가능하고 크기가 작아 분 화식물로 적합하다. 이에 따라 본 연구는 좀부추를 분화 소재 로서 개발하기 위하여 식물의 측지성장을 촉진하고 꽃의 품질 을 향상시키기 위해 수행되었다. 이를 위하여 좀부추의 구근 을 생장조절제(GA3, BA, 에테폰, TDZ)에 다른 시간(1, 5시 간)동안 침지처리했을 때 식물의 생장과 꽃에 어떤 영향을 주 는지 조사하였다. GA3 처리구는 엽수와 자구의 수가 증가해 증식을 촉진시키는 효과가 있었다. 게다가 GA3는 화수의 증 가와 조기개화를 유도했다. 그러나 엽폭과 화경의 폭은 감소 하였다. 에테폰은 좀부추의 초장과 초폭에서 영향을 주지 않 았으나 1h에서 자구의 수가 증가하였다. 에테폰은 화서 발생 을 억제하여 화경의 수가 감소하였다. BA는 식물의 생장과 개 화 특성에 유의적인 영향을 보이지 않았다. TDZ처리한 식물 은 왜화되고 생육상태가 불량하였으며, 식물을 고사시켰다.
Prevention of radiation hazards to workers and the environment in the event of decommissioning nuclear power plants is a top priority. To this end, it is essential to continuously perform radiation characterization before and during decommissioning. In operating nuclear power plants, various detectors are used depending on the purpose of measurement. Portable detectors used in power plants have excellent portability, but there is a limit to the use of a single measuring device alone to quantify radioactive contamination, nuclide analysis, and ensure representation of measurement results. In foreign countries, gamma-ray visualization detectors are being actively used for operating and decommissioning nuclear power plants. KHNP is also conducting research on the development of gamma-ray visualization detectors for multipurpose field measurement at decommissioning nuclear power plants. It aims to develop detectors capable of visualizing radioactive contamination, analyzing nuclides, estimating radioactivity, and estimating dose rates. To this end, we are developing related software according to the development process by purchasing sensors from H3D, which account for more than 75% of the US gamma-ray visualization detector market. In addition, field tests are planned in the order of Wolsong Unit 1 and Kori Unit 1 with Research reactor in Gongneung-dong in accordance with the progress of development. The detector will be optimized by analyzing the test results according to various gamma radiation field environments. The development detector will be used for various measurement purposes for Kori unit 1 and Wolsong
본 연구는 관상가치가 있는 자생 참두메부추와 갯부추를 절화소재로 이용하고자 수행되었다. 실험은 절화가 수확된 직후, gibberellic acid(GA3) 50, 75, 100mg·L-1, silver thiosulfate(STS) 0.1, 0.3, 0.5mM, 8-hydroxyquinoline sulfate(8-HQS) 25, 50, 100mg·L-1, 그리고 시중에 판매되 고 있는 Chrysal 8mL·L-1, Floralife 10mL·L-1의 보존용액 에 처리되었다. 참두메부추의 절화수명 연장에는 Chrysal 보 존용액 처리가 가장 효과적이었으며 다음으로 75mg·L-1 GA3 처리가 효과적이었다. 한편 8-HQS와 STS는 참두메부추의 절화수명을 단축하고 줄기가 갈변하는 등의 부정적인 영향을 끼쳤다. Chrysal과 더불어 Floralife 보존용액 처리는 절화 참두메부추의 상대 생체중변화율을 높이는데 효과가 있었다. 반면 갯부추는 100mg·L-1 GA3 처리에서 절화수명이 유일하 게 7일까지 연장되었다. GA3 보존용액 처리를 제외한 다른 처리에서 갯부추의 절화수명은 증류수인 대조구보다 비슷하 거나 약간 높은 수준이었다. 절화 갯부추의 수분흡수율은 실 험 초반 100mg·L-1 8-HQS 처리에서, 상대 생체중변화율은 Chrysal 보존용액 처리에서 가장 높게 조사되었으나 두 처 리 모두 절화수명이 유의하게 연장되지 않았다. 갯부추는 100mg·L-1 GA3 처리에서 절화수명을 비롯한 절화품질이 가 장 우수하였다.
With the aging of nuclear power plants (NPPs) in 37 countries around the world, 207 out of 437 NPPs have been permanently shutdown as of August 2022 according to the IAEA. In Korea, the decommissioning of NPPs is emerging as a challenge due to the permanent shutdown of Kori Unit 1 and Wolsong Unit 1. However, there are no cases of decommissioning activities for Heavy Water Reactor (HWR) such as Wolsong Unit 1 although most of the decommissioning technologies for Light Water Reactor (LWR) such as Kori Unit 1 have been developed and there are cases of overseas decommissioning activities. This study shows the development of a decommissioning waste amount/cost/process linkage program for decommissioning Pressurized Heavy Water Reactor (PHWR), i.e. CANDU NPPs. The proposed program is an integrated management program that can derive optimal processes from an economic and safety perspective when decommissioning PHWR based on 3D modeling of the structures and digital mock-up system that links the characteristic data of PHWR, equipment and construction methods. This program can be used to simulate the nuclear decommissioning activities in a virtual space in three dimensions, and to evaluate the decommissioning operation characteristics, waste amount, cost, and exposure dose to worker. In order to verify the results, our methods for calculating optimal decommissioning quantity, which are closely related to radiological impact on workers and cost reduction during decommissioning, were compared with the methods of the foreign specialized institution (NAGRA). The optimal decommissioning quantity can be calculated by classifying the radioactivity level through MCNP modeling of waste, investigating domestic disposal containers, and selecting cutting sizes, so that costs can be reduced according to the final disposal waste reduction. As the target waste to be decommissioning for comparative study with NAGRA, the calandria in PHWR was modeled using MCNP. For packaging waste container, NAGRA selected three (P2A, P3, MOSAIK), and we selected two (P2A, P3) and compared them. It is intended to develop an integrated management program to derive the optimal process for decommissioning PHWR by linking the optimal decommissioning quantity calculation methodology with the detailed studies on exposure dose to worker, decommissioning order, difficulty of work, and cost evaluation. As a result, it is considered that it can be used not only for PHWR but also for other types of NPPs decommissioning in the future to derive optimal results such as worker safety and cost reduction.