Background: Neck discomfort and movement limitations are common musculoskeletal problems among modern people. While cervical and thoracic joint mobilization are widely used interventions for cervical dysfunction, research comparing their immediate effectiveness in adults with asymmetrical cervical rotation is limited. Objectives: To compare the immediate effects of cervical versus thoracic joint mobilization in adults with adults with asymmetrical cervical rotation and discomfort. Design: Randomized controlled trial. Methods: Thirty adults with left-right differences in cervical rotation of more than 5 degrees were randomly assigned to a cervical mobilization group (CMG, n=15) or thoracic mobilization group (TMG, n=15). Both groups received Grade III mobilization for 15 minutes. Range of motion (ROM), pain (VAS), and neck disability index (NDI) were measured before and after intervention. Results: Both groups showed significant increases in ROM after intervention (P<.001). Within-group analysis revealed that the TMG showed significant pain reduction (P<.01) and significant reduction in left-right rotation asymmetry (P<.001), while the CMG showed improvement in ROM but no significant changes in asymmetry or pain (P>.05). Neither group showed significant changes in NDI. Between-group comparisons showed no significant differences in any outcome measures. Conclusion: Both cervical and thoracic joint mobilization increased cervical range of motion in adults with asymmetrical cervical rotation discomfort. The TMG demonstrated significant within-group improvements in left-right rotation asymmetry and pain reduction, suggesting potential clinical benefits of thoracic mobilization for certain aspects of cervical dysfunction.
This study explores the seismic performance of steel diaphragm walls in underground structures, a critical aspect of structural engineering. The study focuses on the effects of slab diaphragm flexibility, an often overlooked factor in seismic design. Traditional seismic designs often assume the slab acts as a rigid diaphragm, leading to inaccuracies in predicting how forces are distributed between the slab and walls during an earthquake. To address this, the authors model steel diaphragm walls using equivalent cross-sections and analyze shear forces in both rigid and semi-rigid diaphragm scenarios. Results show that semi-rigid diaphragms reduce the shear forces on the exterior walls while increasing them on the internal core, thereby affecting the overall stiffness of the structure. The study emphasizes the importance of considering diaphragm flexibility in seismic design to achieve more accurate predictions of structural behavior and improve construction efficiency.
The role of the gut microbiota in colorectal cancer (CRC) development has garnered attention, highlighting probiotics as potential adjuncts in CRC prevention and treatment. In recent years, probiotics and their derivatives have demonstrated mechanisms that may contribute to anticancer properties. This study investigates the cytotoxic effects of Bifidobacterium bifidum KCTC 3357, Lacticaseibacillus rhamnosus KCTC 5033, Limosilactobacillus reuteri VA 103, Bacillus galactosidilyticus VA 107, and Lactococcus taiwanensis VE101 on CT-26 mouse colon carcinoma cells using live cells, heat-killed cells (paraprobiotics), and cell-free supernatants (CFS, postbiotics) through an MTT assay. The results indicate that live bacterial strains, such as KCTC 3357, VA 103, and VA 107, promoted CT-26 cell viability, while heat-killed cells and CFS exhibited dose-dependent cytotoxicity. Inactivated forms of KCTC 3357 and VE 101, as well as CFS at 10 mg/mL concentration of KCTC 5033, VA 103, and VE 101, showed the strongest antiproliferative effects. These findings suggest that non-viable probiotic derivatives, such as paraprobiotics and postbiotics, offer promising therapeutic potential for CRC, providing a safer and more stable alternative to live probiotics. However, further research is required to explore their mechanisms of action, in vivo efficacy, and potential clinical applications.
Lumpy Skin Disease (LSD) and Foot-and-Mouth Disease (FMD) cause substantial economic losses on the livestock industry. Therefore, vaccinations have been implemented as the control strategy in endemic countries. However, the potential adverse effects of administering vaccines for both diseases simultaneously have not been thoroughly evaluated. The aim of this study was to assess the impact of vaccinating dairy cows with either or both LSD and FMD vaccines on milk production and physiological parameters such as milk temperature, rumination time and body weight. The experimental groups were divided into four according to the injection materials: 1) saline, 2) LSD vaccine, 3) FMD vaccine, and 4) both vaccines. The impact of vaccination on milk yield and physiological parameters was evaluated daily until 12 days post-vaccination, and milk components were analyzed twice, once per week. Among the experimental groups as well as each vaccine group, no statistically significant differences (p < 0.05) were observed at milk yield, milk components, or milk temperature. This suggests that simultaneous vaccination of LSD and FMD can be administered without adverse effects.
This study investigated the impact of diabetes mellitus (DM) on phacoemulsification outcomes in dogs, focusing on blindness and postoperative complications. A retrospective analysis of 26 dogs (38 eyes) was conducted, comparing diabetic (n=4) and non-diabetic dogs (n=22). Postoperative outcomes were observed for 2 months, and Fisher’s Exact Test was used to assess statistical significance (p<0.05). Blindness occurred in 50% of diabetic eyes compared to 6% in non-diabetic eyes (OR=14.0, p=0.0116). Major complications included glaucoma and retinal detachment, both more common in diabetic dogs. Diabetic dogs are at a significantly higher risk of blindness after phacoemulsification, highlighting the need for thorough preand postoperative management to reduce complications that could lead to vision loss.
Scaling relations are fundamental tools for exploring the morphological properties of galaxies and understanding their formation and evolution. Typically, galaxies follow a scaling relation between mass and size, measured by effective radius. However, a compact class of galaxies exists as outliers from this relation, and the origin of these compact galaxies in the local universe remains unclear. In this study, we investigate the compact dwarf galaxy SDSS J134313.15+364457.5 (J1343+3644), which is the result of a merger. Our analysis reveals that J1343+3644 has a half-light radius of 482 pc, significantly smaller than typical galaxies with the same brightness (Mr = −19.17 mag). With a high star-formation rate (SFR) of 0.87 M⊙ year−1, J1343+3644 is expected to evolve into a compact elliptical galaxy in a few million years. J1343+3644 could, therefore, be a progenitor of a compact elliptical galaxy. The phenomenon happened in early universe, where compact galaxies were common.
본 연구는 지난 10여년간 고려대학교 및 한국과학기술연구원(KIST)에서 AMS를 이용하여 측정된 우주선유발 동위원소 10 Be의 준비 및 측정 과정을 다룬 보고서이다. 총 2 4세트의 표준물질과 107개의 Blank시료가 분석되었으며, 2017년 이후 표준물질의 측정 재현성이 크게 향상되어 국제적인 주요 실험실의 결과와 비교할 만한 수준의 성과를 보였다. 그러나 Blank 값은 사용된 9 Be 캐리어의 종류 및 석영 추출 과정과 AMS 측정 세팅 등 실험 조건에 따라 영향 을 받는 것으로 나타났으며, 이는 잠재적인 오염원을 체계적으로 추적하고 관리할 필요성을 시사한다. 본 연구는 10 Be Background 값을 줄이는 것이 우주선유발 동위원소 연구의 범위를 넓히는 데 중요한 역할을 함을 강조한다. 낮은 Background 값은 상대적으로 최근에 형성된 지형이나 오랜 시간 매몰되어 방사성 핵종이 상당량 감소한, 저준위 10 Be 지형의 연대측정을 가능하게 한다. 향후 연구에서는 실험 과정을 개선하고 가중평균 계산법 등의 새로운 통계적 방법을 도입하여 측정 오차를 최소화하는 데 중점을 둘 예정이다. 본 연구는 다양한 시간적 및 공간적 규모에서 지구표면과학 연구를 발전시키기 위한 우주선유발 동위원소 분석의 기반을 제공한다.
Increasing resource use is the primary motivator for the development of technology industries, which is leading to severe consequences, such as the release and disposal of radioactive waste containing radionuclides in the environment. Cesium (137Cs) is one of the most hazardous radionuclides in the environment. In particular, the steel manufacturing process produces hazardous waste in the form of electric arc furnace dust contaminated with 137Cs. In this study, the tolerances of five legume species to different activity concentrations of 137Cs in both seed germination and initial seedling growth were compared. To determine 137Cs tolerance, several parameters related to the growth and development of legumes were measured. Among the five legumes studied, Crotalaria juncea L. was the most 137Cs tolerant at 50,000 Bq·L−1. Sesbania javanica Miq. and Vigna mungo L. Hepper were moderately tolerant to 30,000 Bq·L−1 137Cs. After 10 days, the stress tolerance indices in all legume species decreased by more than 50% at activity concentrations greater than or equal to 20,000 Bq·L−1 137Cs. This approach allows the selection of desirable traits, making more-effective application possible in the phytoremediation of 137Cs through stress tolerance. In conclusion, legumes are promising candidates for the phytoremediation of environmental pollutants.
This study investigates the strategies that teachers employ when presenting the meaning and form of a novel English word to students with autism spectrum disorder (ASD). This case study observed and interviewed three teachers who taught five ASD students with diverse characteristics and varying language proficiency. Thematic analysis was conducted by integrating a top-down approach, based on the vocabulary teaching strategies commonly used with typically developing students, and a bottom-up approach, based on the emerging data. The results indicate that, similar to their typically developing peers, the meaning and form of the new English word were introduced by connecting to the first language, providing first language definitions, relating to real objects and phenomena, encouraging students’ active participation through elicitation, and conducting oral drills and word spelling. However, unlike typically developing students, the teachers presented English vocabulary to ASD students while making an effort to capture their attention and engagement in the learning process. This study offers suggestions for teachers and recommendations for future research.
A red-crowned crane (Grus japonensis) from Seoul Zoo died with mild anorexia and sudden respiratory distress. A white globoid mass in the abdominal cavity and multifocal nodules in the kidneys were identified on the necropsy. Histologic examination showed anaplastic, solid patterned neoplastic cells in the kidneys and the mass. Immunohistochemistry for pancytokeratin and PAX8 was positive, while heterogeneous antigen expression was present in poorly differentiated neoplastic cells. Overall, the neoplastic changes in the kidneys and the mass were consistent with a renal origin. This case highlights the possibility of further discoveries of metastatic renal cell carcinomas in cranes.
Background: With the growing interest in the health of companion dogs, their average lifespan has increased, leading to an increase in the proportion of elderly dogs. As elderly dogs are vulnerable to various diseases, there is a need for alternatives to predict the risk of major diseases in senior dogs, prevent them in advance, and manage their health effectively. Therefore, this study was conducted to identify candidate genes and single nucleotide polymorphisms (SNPs) influencing primary angle-closure glaucoma, a major disease in elderly dogs, using the Axiom Canine HD Array and establishing foundational data. Methods: Samples from 95 dogs of 26 breeds from South Korea were analyzed using an SNP chip. Ultimately, two SNPs were selected. To assess the impact of non-synonymous SNP (nsSNPs), functional analysis of candidate genes, Hazard Assessment, and protein structure prediction were conducted. Sequencing for SNP validation involved samples from 95 dogs of ten breeds with reported domestic and international glaucoma cases. Results: The candidate gene TNS1 was associated with the integrin signaling pathway. The selected nsSNP was found to cause a mutation at the ninth position of the amino acid sequence, changing serine to leucine and resulting in alterations to the overall protein structure. Sequencing analysis results for SNP validation revealed differences in frequency among breeds. Conclusions: The identified SNP markers are potential risk prediction tools. Utilizing genotype frequency data by breed and individual could aid in disease management and contribute to advancements in the medical industry.
Probiotics have been evaluated as therapeutic agents for cancer treatment in an increasing number of studies. This study investigated the inhibitory and cytotoxic effects of specific Lactobacillus strains on a human colorectal adenocarcinoma cell line (HT-29). The strains assessed were Limosilactobacillus (L.) reuteri VA 102, Ligilactobacillus (L.) animalis VA 105, and Limosilactobacillus (L.) reuteri KCTC 3594 (ATCC 23272). The viability of HT-29 cells was evaluated using the MTT assay. The findings revealed that cell-free supernatants (CFS) exhibited significant anticancer effects. Heat-inactivated L. reuteri VA 105 and L. reuteri KCTC 3594 induced a pronounced reduction in cell viability. Furthermore, live cultures of L. reuteri VA 105 and L. reuteri VA 102 also showed reduced cell viability compared to the control group. These results suggest that CFS and heat-inactivated cells may be more suitable for therapeutic applications than live bacteria owing to their improved safety profiles and reduced potential for adverse effects. Our findings also emphasize the potential anticancer benefits of these LAB strains.
This study aimed to investigate the effects of various washing pre-treatments of native Codium fragile as a feed additive on in vitro ruminal fermentation and CH4 production in ruminants. Seaweed was included at 0.5% dry matter (DM) based on the experimental feed (forage : concentrate = 3:7). Treatment groups were classified as follows: experimental feed (C), no washing (T1), washing at 0°C (T2), washing at 22°C (T3) and washing at 70°C (T4) each immersed for 6 minutes in distilled water. The pH consistently fell within the ruminal stability range. In vitro dry matter digestibility was significantly highest in T2, T3, T4 and C, T4 was the lowest at 48 h (p<0.05). NH3-N concentration was significantly highest in T4 at 48 h (p<0.05). Total gas production at 48 h was 19% lower in T4 compared to C (p<0.01). CH4 production (mL/g DM) at 48 h was lower in all treatment groups compared to C, with T3 showing a 31% reduction (p<0.01). Similarly, CH4 production (mL/g dry matter degradability, DMD) at 48 h was 39% lower for T3 compared to C (p<0.01). At 24 h, total VFA was significantly highest in T1 and T4 (p<0.05). The proportions of acetate was significantly highest in C and T3 was the lowest at 48 h (p<0.01). The proportions of propionate was significantly highest in T3 and C was the lowest at 48 h (p<0.01). The acetate to propionate ratio was singnificantly highest in C at 48 h (p<0.01). The proportions of butyrate at 24 h was lower for T3 compared to C (p<0.05). Therefore, this study confirms that Codium fragile can reduce CH4 production when used as a feed additive for ruminants and this effect is not significantly influenced by the washing pre-treatment. However, if washing process is necessary, washing at 22°C is the most appropriate method to remove foreign objects.
Despite the widespread recognition of the prominent contribution of key language subskills, such as grammar and vocabulary knowledge, to reading comprehension, a research consensus on their relative significance has not been reached. Moreover, the extent of the contribution vocabulary depth makes to reading comprehension has received little research attention. The present study assessed the relative potential contribution of vocabulary depth and grammar knowledge to advanced Korean EFL college students’ reading comprehension abilities, while controlling for their language proficiency and vocabulary breadth, through hierarchical regression analyses. 56 advanced EFL Korean college students were tested on reading comprehension abilities and a range of reading-related subskills including vocabulary breadth, vocabulary depth, grammar, and listening comprehension in English. The findings revealed the unique contribution of vocabulary depth to reading comprehension abilities beyond the effects of both vocabulary breadth and grammar knowledge when English proficiency was controlled for. The findings further underscore the need for balanced approaches in developing L2 learners’ language skills to enhance their reading comprehension abilities.
In recent years, the search on fabrication of highly efficient, stable, and cost-effective alternative to Pt for the hydrogen evolution reaction (HER) has led to the development of new catalysts. In this study, we investigated the electrocatalytic HER activity of the Toray carbon substrate by creating defect sites in its graphitic layer through ultrasonication and anodization process. A series of Toray carbon substrates with active sites are prepared by modifying its surface through ultrasonication, anodization, and ultrasonication followed by anodization procedures at different time periods. The anodization process significantly enhances the surface wettability, consequently resulting in a substantial increase in proton flux at the reaction sites. As an implication, the overpotential for HER is notably reduced for the Toray carbon (TC-3U-10A), subjected to 3 min of ultrasonification followed by 10 min of anodization, which exhibits a significantly lower Tafel slope value of 60 mV/dec. Furthermore, the reactivity of the anodized surface for HER is significantly elevated, especially at higher concentrations of sulfuric acid, owing to the enhanced wettability of the substrate. The lowest Tafel slope value recorded in this study stands at 60 mV/dec underscoring the substantial improvements achieved in catalytic efficiency of the defect-rich carbon materials. These findings hold promise for the advancement of electrocatalytic applications of carbon materials and may have significant implications for various technological and industrial processes.
Regional economic integration organizations (REIOs) can ratify climate change agreements as mixed agreements, including the Paris Agreement, with their member states. A question may arise on what responsibilities can REIOs have under the Paris Agreement in relation to the member states. Analyzing the draft articles on the responsibility of international organizations reveals that REIO can have derived (indirect) responsibility for non-fulfilling the obligations by member states due to the normative control resulting from the adoption of binding resolutions. Also, under Article 4.18 of the Paris Agreement, REIO will be jointly responsible for non-realization of the goals communicated in the NDCs together with non-compliant member. This will make the non-compliant states responsible externally to the third parties and to REIO internally in achieving the goals of NDC and will encourage the compliant member states to participate in realizing the collective goal of REIO because of influence of not realizing the collective goal.
Carbon quantum dots (CQDs) are novel nanocarbon materials and widely used nanoparticles. They have gradually gained popularity in various fields due to their abundance, inexpensive cost, small size, ease of engineering, and distinct properties. To determine the antibacterial activity of metal-doped CQDs (metal-CQDs) containing Fe, Zn, Mn, Ni, and Co, we chose Staphylococcus aureus as a representative Gram-positive strain and Escherichia coli as a representative Gram-negative bacterial strain. Paper disc diffusion tests were conducted for the qualitative results, and a cell growth curve was drawn for quantitative results. The minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and IC50 were measured from cell growth curves. As a result, all of the metal-CQDs showed toxicity against both Gram-positive and Gram-negative bacteria. Furthermore, Gram-negative bacteria was vulnerable to metal-CQDs than Gram-positive bacteria. The toxicity differed concerning the type of metal-CQDs; Mn-CQDs exhibited the highest efficacy. Hence, this study suggested that CQDs can be used as new nanoparticles for antibiotics.
Colorectal cancer (CRC) poses a significant global public health challenge, accounting for 10% of newly diagnosed cancer cases and causing 9.4% of cancer-related deaths. Conventional treatment methods like surgery, chemotherapy, and radiation have shown limited success despite the increasing incidence of CRC. Thus, there is an urgent need for innovative therapeutic approaches. Researchers are continually working on developing novel technologies, notably focused on the creation of safe and effective cancer nanomedicines, in their continuous effort to advance cancer treatment. Nanoparticles exist at the nanoscale. Nanoparticles at the nanoscale have distinctive properties that leverage the metabolic disparities between cancerous and normal cells. This property allows them to selectively induce substantial cytotoxicity in cancer cells while minimizing damage to healthy tissue. Carbon nanomaterials (CNMs), including graphene oxide (GO), carbon nanotubes (CNTs), and nanodiamonds (NDs), have undergone extensive investigation due to their biocompatibility, surface-to-volume ratio, thermal conductivity, rigid structural properties, and ability for post-chemical modifications. Notably, GO has emerged as a promising two-dimensional (2D) material for cancer treatment. Several groundbreaking nanoparticle-based therapies, predominantly utilizing GO, are currently undergoing clinical trials, with some already gaining regulatory clearance.
Aluminum-based composites are in high demand in industrial fields due to their light weight, high electrical conductivity, and corrosion resistance. Due to its unique advantages for composite fabrication, powder metallurgy is a crucial player in meeting this demand. However, the size and weight fraction of the reinforcement significantly influence the components' quality and performance. Understanding the correlation of these variables is crucial for building high-quality components. This study, therefore, investigated the correlations among various parameters—namely, milling time, reinforcement ratio, and size—that affect the composite’s physical and mechanical properties. An artificial neural network model was developed and showed the ability to correlate the processing parameters with the density, hardness, and tensile strength of Al2024-B4C composites. The predicted index of relative importance suggests that the milling time has the most substantial effect on fabricated components. This practical insight can be directly applied in the fabrication of high-quality Al2024-B4C composites.