검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 61

        21.
        2017.11 서비스 종료(열람 제한)
        화석연료의 고갈 및 환경오염 문제가 대두됨에 따라 전 세계적으로 지속가능한 에너지자원의 확보에 대한 필요성과 관심이 높아지고 있다. 바이오매스 및 폐기물을 에너지원으로 하여 에너지를 생산하는 바이오 에너지분야는 최근 각광받는 신・재생 에너지 분야 중 하나이다. 바이오매스로부터 전환된 바이오 에너지를 사용할 때 발생되는 이산화탄소가 바이오매스의 성장에 다시 쓰이게 되므로 탄소 중립적이며 바이오매스의 경작, 재배를 통하여 지속적으로 생산 할 수 있다는 장점을 가진다. 바이오매스는 증기 또는 산소를 산화제로 가스화하여 공기에 비해 높은 발열량을 가지는 합성가스(syn-gas) 생산이 가능하고 적절한 정제 및 조성제어 공정을 거쳐 합성천연가스, FT 디젤, 메탄올, 수소 등의 고부가 합성 연료 생산에 활용할 수 있다. 그러나 바이오매스의 에너지 밀도가 낮기 때문에 가스화 플랜트와 바이오매스 생산지역이 원거리일 경우 높은 운송비용으로 경제성이 떨어지는 단점을 지닌다. 이러한 단점 극복을 위하여 바이오매스 생산지에 급속열분해 플랜트를 건설하여 에너지밀도가 높은 바이오오일을 생산하고 가스화 플랜트로 이송하여 가스화하는 방법이 대안으로 제시되고 있다. 또한 바이오오일 가스화가 바이오매스 직접 가스화에 비하여 TCI(total capital investment)가 낮아 경제적으로 유리하며 합성가스 내 타르 농도가 낮고 수소 및 일산화탄소의 수율이 높아 고품질 합성가스의 생산이 가능하다. 따라서 본 연구에서는 국산재 유래 바이오오일 가스화를 위한 기초실험으로 바이오오일의 가스화 kinetics에 관한 연구를 진행하였다. 바이오오일 시료의 무게감량을 승온 속도에 따라 측정하여 kinetics 인자들(평균반응속도, 활성화에너지)을 도출하였으며, 이를 이용하여 반응차수를 계산하였다.
        22.
        2017.05 서비스 종료(열람 제한)
        하수슬러지, 음폐수, 가축분뇨 등의 유기성폐기물의 해양투기 금지와 육상처리에 대한 대책 마련이 시급해지면서 유기성폐기물을 통합소화하여 메탄 등의 신재생에너지를 생산할 수 있는 바이오가스화 기술이 대안으로 부각되고 있다. 국내에서 가동 중인 바이오가스화 시설 중 하수슬러지 혐기소화의 경우, 현행 법령에서 제시하는 유기물분해율과 메탄생성율 기준을 만족하지 못하고 있다. 또한 음식물류폐기물의 혐기소화는 다른 유기성 폐기물에 비하여 처리효율은 높으나 안정적인 시설 운영을 도모하기 어려운 실정이다. 본 연구에서는 12개소 하수슬러지 바이오가스화 시설을 대상으로 유기물 분해율, 메탄생성율을 산정하여 음식물류폐기물 투입 비율에 따른 영향을 평가하였다. 소화조 유입 및 유출수에 대한 TS, VS, 영양물질 (탄수화물, 단백질, 지방) 함량을 분석하여 이론적인 메탄생성율을 계산한 후 실제 현장에서 발생되는 메탄생성율과 비교하여 효율성을 판단하였다. 또한 사계절 정밀모니터링에서 도출된 휘발성지방산, 알칼리도, 암모니아성 질소 등 저해인자를 측정・분석하고 대상 바이오가스화 시설의 안정적 운전 여부를 진단하였다.
        23.
        2016.11 서비스 종료(열람 제한)
        급격한 도시화 및 산업화로 인하여 화석연료의 사용이 증가되고 이에 따라 기후 변화 문제가 급격히 대두되고 있다. 이에 따라 신재생에너지에 대한 관심이 증대되고 있으며, 이에 관한 많은 연구들이 진행되고 있다. 이러한 신재생에너지 중 국내에서는 신재생 에너지 중 폐기물 및 바이오매스를 이용한 신재생 에너지 보급 비율이 70% 이상을 차지하고 있는 실정이다. 하지만, 이러한 신재생 에너지 보급률은 폐기물 열처리 시설의 폐열이용까지 포함된 것으로 실질적인 보급률은 통계에 미치지 못하는 것으로 보인다. 따라서 본 연구에서는 바이오매스를 이용한 에너지화 기술에 대하여 연구를 진행하였으며, 에너지화 기술 중 합성가스 생산에 목적을 둔가스화 기술을 적용하였다. 사용된 바이오매스의 경우, 일반적인 바이오매스를 사용하기 위해 톱밥을 사용하였다. 하지만 바이오매스를 이용한 가스화 기술의 가장 큰 단점으로 바이오매스 내 높은 리그닌 성분에 의한 타르 발생을 꼽을 수 있으며, 이를 해소하기 위한 많은 연구들이 진행 되고 있다. 본 연구에서는 추가적인 타르 제어시설을 설치하지 않고 2차 산화제를 주입함에 따라 Thermal cracking의 효과로서 타르를 제어하고자 한다. 발생된 타르에 대해서는 활성탄을 이용하여 중량 변화 측정을 통해 정량 분석을 진행하였으며, Micro-GC를 통해 C2-C6의 탄화수소 물질의 거동을 살펴볼 수 있었다.
        24.
        2016.11 서비스 종료(열람 제한)
        우리나라는 2030년 까지 모든 경제분야에 걸쳐 온실가스 배출을 약 37% 감축할 계획을 UNFCCC에 제출하였다. 이에 따라 온실가스 감축목표를 설정하고 부문별・업종별 배출권 할당량을 결정하고 있다. 따라서 보다 정확한 온실가스 배출량을 산정하는 것이 중요하며 현재는 배출활동별 온실가스 배출량 세부산정방법과 기준을 Tier 1, 2, 3, 4로 마련하여 관리하고 있다. 활동자료와 배출계수로 계산하는 Tier 1~3 기준에는 화석탄소함량(FCF)을 적용하여 폐기물에 포함된 바이오매스의 비율이 제외될 수 있는 반면, 소각시설에서 발생하는 배출가스 중의 온실가스를 직접적으로 측정하는 Tier 4(연속측정법)에서는 총 CO2만 측정 가능하기 때문에 온실가스 중의 바이오매스량을 제외하기 위해서는 화석연료 기원물질에 의한 배출량과 바이오매스 기원물질에 의한 배출량 구분이 필수적이다. 따라서 본 연구에서는 생활폐기물 소각시설과 사업장폐기물 소각시설 각각에서 연소 후 배출되는 가스를 가스샘플링장치를 이용하여 포집하였으며, 포집한 가스성분과 CO2 중의 바이오매스 기원물질량을 확인하였다. 기체시료 중의 바이오매스량을 측정분석하기 위해서 탄소동위원소를 이용한 가속기 질량분석기(Accelerator Mass Spectrometry)를 이용하였으며 보다 명확한 온실가스배출량 산정을 위한 기초자료로 활용하고자 한다.
        25.
        2016.11 서비스 종료(열람 제한)
        하수슬러지 및 음식물류폐기물과 같은 유기성폐기물이 해양투기가 전면 금지되면서 육상처리 및 재활용처리가 관심이 되고 있다. 하수슬러지와 음식물류폐기물을 육상처리할 뿐만 아니라 신재생에너지를 생산할 수 있는 바이오가스화가 그 처리에 좋은 대안으로 부각되고 있다. 최근 하수슬러지 혐기소화시설에서 음식물류폐기물을 병합처리 하는 경향이 늘고 있다. 그러나 운전중인 하수슬러지 바이오가스화 시설은 그 유기물분해율과 메탄생성율 측면에서 그 효율이 매우 저조하며, 음식물류폐기물 바이오가스화 시설은 효율은 많이 증가하였으나 아직까지는 그 안정적 운전이 미비한 실정이다. 본 연구에서는 최근 하수슬러지와 음식물류폐기물을 병합처리하는 추이에 맞춰 효율성과 안정적 운전에서 문제점을 조사하고 이를 해결할 수 있는 고려인자들을 도출하여 그 가이드라인을 제시하는 것을 목적으로 하고 있다. 이를 위하여 하수슬러지만 혐기소화하는 5개 시설과 하수슬러지 혐기소화시 음식물류폐기물을 병합처리하는 9개 시설을 대상으로 현장조사를 실시하였다. 현장조사의 목적은 병합처리 바이오가스화 시설의 문제점들을 조사하고 그 문제점을 해결하기 위한 고려인자들을 도출하는 것이다. 또한 계절별로 하수슬러지 바이오가스화 시설 4개와 병합처리시설 7개에 대하여 정밀모니터링을 실시하였다. 이 정밀모니터링을 통하여 현장조사에서 도출된 고려인자에 대한 구체적인 가이드라인들을 제시하고자 한다. 가이드라인 제시는 전처리 등 6가지 공정별로 하수슬러지와 음식물류폐기물 물성들을 고려하여 제시하였다.
        26.
        2015.11 서비스 종료(열람 제한)
        바이오리엑터형 매립장은 1970년대 석유파동(Oil-shock) 이후 미국 등을 중심으로 석유를 대체할 수 있는 에너지원의 하나로서 폐기물 분해과정에서 발생되는 메탄가스를 매립지로부터 최대한 단시간에 많이 회수하고자 하는 목적으로 활발히 개발 되었다. 즉, 매립지를 바이오리엑터라는 거대한 생물반응조의 개념으로 접근하여 폐기물이 활발하게 분해가 될 수 있도록, 수분 등을 인위적으로 공급하는 등의 방법을 통하여 폐기물 분해를 촉진하는 새로운 매립지 관리방식이다. 한편, 국내 폐기물 매립시설은 하수슬러지(2003년) 등 유기성폐기물의 직매립 금지로 인하여 매립지에 반입되는 폐기물의 특성이 무기화, 건조화 되고 있으며, 또한 악취방지 등 주변지역 환경개선을 목적으로 매립지 복토기준을 강화하여 시행하고 있다. 이에 따라 매립지로 유입되는 수분은 급격히 감소하여 매립층 내부는 매우 건조화 되고 있다. 만약 이 같은 현상이 지속되면 매립가스 발생량이 감소하여 매립가스 발전사업에 차질이 발생하고, 또한 안정화에 오랜 시간이 소요됨에 따라 그만큼 매립지 사후관리에 어려움이 발생할 것이다. 이와 같은 이유로 국내에도 바이오리엑터형 매립장 제도의 도입이 절실히 요구되고 있다. 수도권매립지관리공사는 이 같은 바이오리엑터형 매립지의 현장적용을 위하여 2013년부터 수도권매립지 제2매립장 7단 3C, 4C 두 개블럭 약 15만㎡에 침출수 재순환시설을 설치하여 2013년 10월부터 2015년 8월말 현재까지 약 18개월간 일평균 약 428㎥, 총 168,570㎥의 침출수를 재순환하였다. 그 결과, 폐기물층내 함수율 변화는 주입전 대비 평균 약 3% 증가하였으며, 같은 기간 매립가스 포집량은 순메탄 기준으로 대조구역의 상대적 감소량 대비 평균 36.7% 증대된 것으로 나타나 침출수 재순환으로 인한 수분공급으로 매립지내 생물분해가 촉진되고 있는 것으로 판단된다.
        27.
        2015.11 서비스 종료(열람 제한)
        2005년 유기성폐기물의 직매립이 금지되었다. 또한 유기성폐기물의 해양배출 기준 강화에 따라 2013년부터 음식물류폐기물의 해양배출이 금지되었다. 국내 2013년 음식물류폐기물 발생량은 전체 생활폐기물 중 26.0%인 12,501 톤/일 규모로 배출되고 있으며, 처리량은 2012년 대비 약 58.4%로 매년 급증하고 있다. 최근 음식물류폐기물의 처리방안으로 바이오가스화가 주목받고 있다. 정부는 “폐자원 및 바이오매스 에너지대책 실행계획”(환경부 2009) 등을 바탕으로 바이오가스화 시설의 신규 설치 및 운영을 추진하고 있다. 바이오가스화 시설의 신규 건설이 본격적으로 이루어지는 반면, 운전 효율성은 운전 및 유지관리 미숙, 계절별 영향 등으로 인하여 처리기준에 미치지 못하는 시설이 다수인 실정이다. 본 연구에서는 실제 운영 중인 A지역의 음식물류폐기물 바이오가스화 시설을 대상으로 계절별 산발효조의 정밀모니터링 및 시설 운영인자를 조사・분석하여 계절별 산발효조 상태에 따른 혐기소화조의 운전효율성을 평가하고자 하였다. 산발효조의 현황을 파악하기 위하여 봄, 여름, 가을에 걸쳐 휘발성지방산, 영양물질, CODcr 등의 정밀모니터링을 실시하였다. 또한 해당 시설의 바이오가스 생산량, 휘발성지방산 등과 같은 운영 자료는 2014년 3월부터 2015년 4월까지 약 1년 동안의 데이터를 바탕으로 월별 평균 값을 도출하였다. 분석결과와 운영 자료를 비교·분석한 결과, 여름철 온도의 상승의 영향으로 산발효조 내부에서 음식물류폐기물이 더욱 활발히 분해되어 휘발성지방산의 농도가 증가하였다. 이에 따라 여름철 산발효조의 영향으로 메탄생성율 및 바이오가스의 메탄 함량(%)이 저하되는 경향을 보였다. 특히 메탄생성율은 여름철(6~8월) 30.0~41.03 m³ CH4/tonFWL, 여름을 제외한 다른 계절의 경우 38.6~51.6 m³ CH4/tonFWL로 계절에 따른 차이를 나타내었다.
        28.
        2015.11 서비스 종료(열람 제한)
        최근 화석연료의 고갈, 정부의 신재생에너지 보급정책에 맞추어 바이오매스에 대한 관심이 높아지고 있다. 바이오매스 가스화 공정은 대표적인 신재생연료의 하나인 바이오매스를 가스화반응을 통해 합성가스를 생산하는 친환경적, 탄소 중립적 열적처리 공정이다. 그러나 바이오매스만을 단독으로 가스화 하였을 경우 수급성 및 낮은 발열량으로 인해 문제점이 제기 되고 있다. 따라서 본 논문에서는 사회적으로 처리문제, 건강위해성 문제가 되고 있는 고발열량의 폐플라스틱을 함께 Co-gasification 함으로써 이를 보완하고자 하였다. 또한 본 연구에서는 반응이 용이한 톱밥형태의 목질계 바이오매스와 폐플라스틱 중 많은 비중을 차지하는 Polypropylene(PP), Polyethylene(PE)를 이용하여 여러 조건 변수에 따른 가스화반응 특성을 파악하고, 이러한 혼합원료를 에너지원으로 활용하는데 기초자료를 제공하고자 한다. 바이오매스와 폐플라스틱의 혼합원료 가스화 특성을 파악하기 위해 회분식 반응기를 이용하여 실험을 하였으며 실험 변수는 반응온도와 공기비, 시료의 혼합비율이 고려되었고, 촉매로써 활성탄, 돌로마이트, 올리바인을 사용하여 각각의 변화에 따른 최적의 반응조건을 도출하고 합성가스 조성 및 생성물의 분포특성을 비교 분석하였다. 주요 합성가스 생성물은 CO, H2, CH4로 실험결과 바이오매스와 폐플라스틱 혼합시료는 반응온도가 증가할수록 탄소가 부분 산화되어 일산화탄소가 생성되는 반응, 탄소가 완전 산화되는 반응, 그리고 탄소와 수분이 반응하여 일어나는 수성가스 반응 등의 영향으로 조성비가 증가하여 가스의 발열량이 증가하였다. 또한 PP, PE 혼합 시료의 경우 바이오매스 단독 시료의 가스화보다 생성물이 상대적으로 많이 발생되었음을 확인할 수 있었으며, 혼합비율이 증가할수록 액상생성물 및 타르성분, 왁스성분이 증가하여 가스 생성물의 양이 줄어드는 것을 확인하였다. 촉매의 경우 돌로마이트를 사용할 경우 H2의 생성율이 가장 높았고 올리바인 촉매의 경우 돌로마이트나 활성탄에 비해 크게 합성가스 조성에 긍정적인 영향을 미치지 못했다.
        29.
        2015.11 서비스 종료(열람 제한)
        가축분뇨, 하수슬러지 및 음폐수와 같은 유기성폐기물이 해양투기가 전면 금지되면서 육상처리 및 재활용처리가 관심이 되고 있다. 가축분뇨, 하수슬러지와 음폐수를 육상처리할 뿐만 아니라 신재생에너지를 생산할 수 있는 바이오가스화가 그 처리에 좋은 대안으로 부각되고 있다. 최근 가축분뇨 혐기소화시설에서 음폐수를 병합처리 하는 경향이 늘고 있다. 본 연구에서는 가축분뇨만 혐기소화하는 4개 시설과 가축분뇨 혐기소화시 음식물류폐기물을 병합처리하는 9개 시설을 대상으로 현장조사를 실시하였다. 현장조사의 목적은 병합처리 바이오가스화 시설의 설계 및 운전 기술지침서를 마련하기 위하여 기초자료를 수집하고 시설별 운전시 발생되고 있는 문제점들을 조사하여 개선방안을 마련하기 위한 것이다. 또한 계절별로 가축분뇨 바이오가스화 시설 3개와 병합처리시설 6개에 대하여 정밀모니터링을 실시하였다. 병합처리 바이오가스화는 음식물류폐기물과 가축분뇨가 별도로 반입되어 각각의 전처리 및 이송설비를 거쳐서 혐기소화 전에 설치되어 있는 중간저장조에서 합쳐지게 된다. 중간저장조에서 혼합된 음식물류폐기물 및 가축분뇨는 두 유입물이 하나로 합쳐져 혐기소화 공정 이후의 공정들을 거쳐서 처리되게 된다. 따라서 본 연구에서는 병합처리 바이오가스화 시설에 대하여 중간저장조 이전 공정들까지는 음식물류폐기물과 가축분뇨가 별도로 처리 공정을 거치므로 별도의 문제점들과 설계시 가이드라인을 제시하며, 중간저장조부터는 음식물류폐기물과 가축분뇨가 합쳐진 상태의 공통사항으로 문제점들과 가이드라인을 제시하고 있다.
        30.
        2014.11 서비스 종료(열람 제한)
        최근까지 해양투기로 처리되던 유기성 폐기물이 런던 협약에 의해 금지되면서 혐기성 소화 처리 방법이 각광받고 있다. 혐기성 소화는 고농도의 폐기물에도 적용되고, 바이오 가스가 생산되며 슬러지 생산량이 적고 탈수성이 좋은 장점이 있다. 반면 슬러지 체류 시간이 길어 다량의 폐기물 처리를 위해서 대규모의 소화조가 필요한 단점이 있다. 이러한 단점에도 불구하고 혐기성 소화 시 발생되는 바이오가스에 대한 잠재적 가능성이 인식되면서, 에너지 효율을 개선하고 혐기성 소화의 단점을 극복하기 위한 기술개발이 지속적으로 진행되고 있다. 그 방법으로는 초음파, 가압열수 분해 등의 전처리 방법과 통합소화와 같은 기술들이 연구되고 있다. 본 연구는 초음파 전처리를 통해 유기성 폐기물중 하나인 분뇨의 바이오 가스 생성 효율 증대를 살펴보고 적정 초음파 처리 조건을 알아보고자 하였다. 분뇨를 1000J/g ~ 50000J/g의 조건으로 초음파 전처리 후 메탄 잠재량 분석(Biochemical Methane Potential Test : BMP) 방법으로 가스 발생량을 측정하였다. 또한 전처리를 통한 휘발성 고형물 감량율(VSR)을 평가하였고, 탈수능을 위해 CST를 측정하였다. 실험 결과 가스발생량은 최저 183.5ml-biogas/g-VS, 최고 191.5ml-biogas/g-VS 로 큰 차이를 보이지 않았다. 휘발성 고형물 감량은 30000J/g에서 58.45%로 가장 효율이 좋았다.
        31.
        2014.11 서비스 종료(열람 제한)
        바이오매스 및 폐기물로부터의 합성가스 생산 기술 개발은 효율적인 에너지 생산 및 처리방법으로 각광받아오고 있다. 특히, 가스화 반응으로부터 생산되는 타르는 가스화 효율을 낮추고, 배관폐쇄에 따른 가스화 시스템의 연속운전 저해 요소로 작용하고 있다. 효율적인 합성가스 내 타르 저감 방안으로, 촉매를 활용한 수증기 개질 연구가 이루어져 오고 있다. 주로 수증기 개질 반응용으로 사용되는 Ni 계열의 상용 촉매는 높은 가격 및 낮은 열적안정성으로 인해 중금속 계열의 Fe 활용 연구에 관한 연구 결과가 보고되고 있다. 특히, 제련공정으로부터 생산되는 제강슬래그와 염색 산업단지에서 발생되는 염색슬러지의 주성분은 Fe로, 상용 촉매 대체 적용가능 여부를 판단하기 위해 타르 스팀 개질 특성을 확인할 필요가 있다. 본 연구에서는 제강슬래그의 비표면적 향상을 위해 고온 알칼리 처리를 하였으며, 염색슬러지의 활용을 위해 고온 소성 처리를 수행하였다. 전처리를 거친 각각의 시료는 타르의 대표 성분인 벤젠을 이용하여 다양한 반응온도 조건에서 촉매 성능 평가를 수행하였으며, 대조군으로 촉매가 없는 조건과 Fe계열의 상용촉매 상에서 수행을 하였다. 최대 활성을 나타내는 900℃에서 제강슬래그의 경우 상용촉매에 비해 약 15% 높은 촉매 활성을 나타내었으며, 염색슬러지의 경우 상용촉매와 동일한 활성을 나타내었다. 이를 통해, 상용 촉매를 대체 할 수 있는 폐자원을 활용한 타르 개질 공정에 적용함으로써 운전비용 절감과 자원재활용에 크게 기여할 것이라고 사료된다.
        32.
        2014.11 서비스 종료(열람 제한)
        폐기물들을 통해 자원화 및 재생 가능한 원료를 활용하여 원료비용 및 처리에 따른 비용절감을 통해 폐기물 축적에 대한 환경영향을 줄이기 위한 방안을 모색할 필요가 있다. 그러나 현재 바이오매스 및 폐기물 각각의 원료에 대한 가스화 연구는 많이 수행되고 있으나 혼합원료에 대한 연구는 미비한 실정이다. 이에 본 연구에서는 바이오매스와 폐플라스틱을 혼합한 신연료(라디에타 소나무, 폴리에틸렌, 폴리프로필렌)를 이용한 촉매・혼합가스화를 통해 에너지원으로 활용하는 데 기초자료를 제공하고자 한다. 바이오매스와 폐플라스틱의 촉매・혼합가스화 특성을 살펴보기 위해 배치반응기를 이용하여 실험을 수행하였다. 반응온도는 700~900℃, 공기비는 0.2, 바이오매스에 대한 플라스틱의 혼합비는 20%, 40%로 하였고, 활성탄, 돌로마이트, 올리빈 촉매를 이용하여 최적의 반응조건을 도출하였다. 실험결과 바이오매스와 폐 폴리프로필렌 혼합시료는 반응온도가 증가할수록 Boudouard reaction, Water gas reaction 등의 영향으로 H2, CO, CH4 등의 조성비가 증가하여 가스의 발열량이 증가하였다. 촉매를 이용한 가스화반응에서는 돌로마이트를 사용할 경우 H2 생성율(34.03~35.58%)이 가장 높았고, 그 외 CO 26.70~27.52%, C2H2 0.29~0.34% C2H4 7.85~11.56%가 생성되었다. 활성탄 역시 H2생성에 영향을 주었으나 다양한 크기의 세공들을 이용하여 흡착을 통한 촉매역할을 하는 활성탄보다 돌로마이트의 CaO, MgO가 Carbon formation reaction을 활발하게 진행시켜 고분자 물질들이 촉매분해를 통해 H2생성이 활발하게 진행된 것으로 사료된다. 올리빈의 경우 돌로마이트나 활성탄에 비해 크게 합성가스 조성의 긍정적인 역할을 하지 못하였다.
        33.
        2014.11 서비스 종료(열람 제한)
        국내에서 발생하는 음식물쓰레기는 퇴비화・액비화, 사료화, 바이오가스화 등의 방법으로 처리되고 있으나 사료화 및 퇴비화 시 과다한 에너지 소비로 인한 비효율성이 대두되면서 음식물쓰레기의 에너지 가치 및 바이오에너지화에 관한 연구가 활발히 이루어지고 있다. 또한, 가정용 음식물쓰레기 분쇄기(디스포저)를 이용할 경우 음식물쓰레기 보관, 배출, 수거, 운반 등으로 인한 환경적 문제를 해소하고 분쇄물의 메탄화로 에너지 생산이 가능하다. 현재 판매가 허용된 디스포저 제품은 본체와 2차 처리기(거름망, 회수기)가 함께 있는 일체형으로, 그 규격을 음식물쓰레기가 고형물 무게 기준 80% 이상 회수되거나 하수관으로의 배출량이 20% 미만인 제품으로 규정하고 있다. 그러나 현재 개발되어 있는 디스포저를 이용한 음식물쓰레기 처리 시 투입되는 수돗물로 인해 가용 성분이 씻겨나가는 문제가 발생할 수 있다. 따라서 본 연구에서는 표준음식물쓰레기를 디스포저로 처리 후 배출되는 오수를 체거름하여 각 시료의 3성분을 분석하고 가연분 함량에 따른 가스발생량 및 바이오에너지화 가능성을 확인하고자 한다. 한국환경산업기술원에서 제시하고 있는 방법에 따라 표준음식물쓰레기를 만들고 회분식 디스포저(KD 132, National社, Japan)를 이용하여 디스포저 오수를 제조하였다. 제조한 디스포저 오수는 6.70, 4.00, 0.71, 그리고 0.25 mm 크기의 체를 연속으로 설치하여 고형물을 분리하였으며 각 크기의 체로 인해 걸러진 고형물과 0.25 mm 이하의 부유물이 포함된 액상의 3성분을 분석하였다. 시료의 3성분 분석은 국내 폐기물공정시험법에 따라 수행되었으며, 이를 바탕으로 수분함량, 회분함량 및 가연분 함량을 구하였다. 분석 결과, 회수된 총 휘발성 고형물(VS)은 6.70 mm 이상이 전체 발생된 음식물쓰레기 중 휘발성 고형물 무게의 30.3%, 6.70 mm 에서 4.00 mm 사이가 25.0%, 4.00 mm 에서 0.71 mm 까지 20.3%, 0.71 mm 에서 0.25 mm 까지 21.0% 이었으며, 0.25 mm 이하의 액상에서 3.3%가 회수되었다. 체거름 후 회수된 액상에도 0.25 mm 이하의 부유물로 인한 휘발성 고형물이 포함되어 있는 것으로 확인되었으며, 이로 인한 가스발생 및 회수가능성이 있을 것으로 판단된다. 이에 Biochemical Methane Potential(BMP) test 등 추가 연구를 통해 음식물쓰레기 분쇄기 오수의 메탄발생량 및 바이오에너지화 가능성의 보다 상세한 분석이 필요할 것으로 사료된다.
        34.
        2014.11 서비스 종료(열람 제한)
        바이오매스의 가스화 기술은 바이오매스를 합성가스로 변환하여 보일러, 엔진, 가스터빈 등에 직접적으로 활용하거나 화학적 변환을 통해 연료를 생산하는 등 에너지 밀도를 높이고 수송, 저장을 용이하게 할 수 있는 기술이다. 가스화 공정에서 바이오매스는 열분해 과정을 거치며 타르(다양한 종류의 탄화수소)와 가스가 생성된다. 이때, 타르는 약 350℃ 내외에서 응축되기 시작하며, 가스화기 등 각종 설비의 후단에 배관 막힘, 부식, 열전달 저하, 촉매 반응성 저하 등의 문제를 야기한다. 이러한 문제를 해결하기 위해 가스화기 내부에서 일차적으로 타르를 저감하는 방법에 대한 연구가 필요하다. 본 연구에서는 저속 열분해를 통해 생성된 타르의 특성에 대해 파악하였으며, 반응기 내부에서 가스의 체류시간 및 반응에 사용되는 촤(char)의 유/무 및 종류에 따른 타르의 분해 특성에 대해 분석하였다. 실험에 사용된 바이오매스 샘플은 전나무이며, 입자 크기는 1 cm³ 이고, 수분함량은 7.8%, 회분 함량 0.6%, 휘발분/고정탄소 비는 4.65으로 나타났다. 타르의 분해를 위해 사용된 촤는 미세 표면적, 기공분포, 밀도가 서로 다른 3 종류의 바이오매스(Paddy straw, PKS, 전나무)를 대상으로 열분해(800℃)를 통해 생산하였으며, 입자 크기를 0.5-1 mm 크기로 분류하여 실험하였다. 본 연구에서는 저속 열분해와 타르 분해 실험(열적 분해/촤 촉매반응)으로 나누어 실험을 진행하였다. 두 실험에 사용되는 반응기는 서로 직렬로 연결되어 있어 저속 열분해에서 생성된 열분해 증기(타르, 가스)가 타르 분해 반응기를 통과한다. 열분해는 고정층 반응기를 사용하여 최종 온도 500℃까지 약 10℃/min으로 승온 하였으며, 퍼지 가스는 질소(1.5 l/min)를 사용하였다. 타르 분해 반응기의 온도는 800℃로 유지하였고, 열분해 증기의 체류시간을 1, 3, 5초로 나누었고, 3종류의 촤를 사용해 타르의 전환 특성을 파악하였다. 저속 열분해의 생성물 수율은 촤 26.0%, 가스 22.8%, 수분/타르 51.2%로 나타났다. 열적 분해만 일어나는 경우 체류시간이 1-5 초로 증가할수록 수분/타르의 수율은 36.2-32.7%로 감소하였다. 반면, 고온 분위기에서 타르가 분해되어 가스로 변환되면서 가스의 수율은 38.0-42.1%로 증가하였다. 열적 분해에 비해 촤 촉매반응의 경우 수분/타르의 수율은 체류시간 1초에서 25.7-32.3%, 3초에서 17.8-23.4%, 5초에서 18.2-21.3%로 감소하였다. 3종류의 촤를 체류시간 3초에 대해 비교하면 수분/타르의 수율은 샘플별로 Paddy straw 23.4%, PKS 17.8%, 전나무 21.2%로 나타났다. 촤 촉매반응의 경우 고온에서 촤와 수분이 반응하여 CO, H2로 변환(C(s)+H2O⟶CO+H2)되어 수분/타르의 수율이 낮게 나타났다. 또한, 반응기 상단의 촤 입자 표면에 분자량이 큰 타르가 흡착되는 것으로 나타났다. 촤 종류에 따라 수분/타르의 수율의 차이는 각각 촤의 특성(미세표면적, 기공분포)에 따라 다양하게 나타났다. 결론적으로, 타르는 고온의 분위기에서 일차적으로 분해되며, 체류시작이 길고 촤를 사용할 때 농도가 낮아지며 타르의 저감 특성도 촤에 따라 변화하는 것을 확인하였다. 이 결과는 고정층 가스화기의 타르 저감을 위한 설계 개선에 활용될 수 있다.
        35.
        2014.09 KCI 등재 서비스 종료(열람 제한)
        In this study the production of methane gas and the removal efficiency of nutrients in the anaerobic co-digestion facilitieswith food waste/food waste leachate (FWL), animal manure and food waste leachate (A-MIX), and sewage sludge andfood waste leachate (S-MIX) were investigated. The average amount of the theoretical methane production was 578.4CH4·L/kg·VSin from the anaerobic digestion facilities with FWL, 606.0CH4·L/kg·VSin from those with A-MIX and 570.0CH4·L/kg·VSin from those with S-MIX, respectively. The amount of the practical methane production was 350.7CH4·L/kg·VSin from the anaerobic digestion facilities with FWL, 379.5CH4·L/kg·VSin from those with A-MIX and 348.8CH4·L/kg·VSin from those with S-MIX, respectively. The nutrient compositions of FWL were 3.2g/100g for carbohydrates, 1.8g/100g for proteins and 1.9g/100g for lipids. The nutrient compositions of A-MIX were 0.4g/100g for carbohydrates,2.55g/100g for proteins 0.4g/100g and 0.7g/100g for lipids, respectively. The nutrient compositions of S-MIX were0.4g/100g for carbohydrates, 2.4g/100g for proteins 1.6g/100g and 0.4g/100g for lipids, respectively. The removalratio of carbohydrate was very high over 75% in all facilities and that of lipid was very low below 25%.
        36.
        2013.11 서비스 종료(열람 제한)
        바이오매스 가스화 반응으로부터 생성되는 타르는 가스화 효율을 낮추고 배관폐쇄에 의한 가스화 시스템의 연속운전에 대한 저해 요소로 작용한다. 효율적으로 합성가스 내 타르를 제거하기 위한 방안으로, 촉매를 활용한 수증기 개질 반응이 주목되고 있다. 특히, 수증기 개질 반응을 거친 타르는 합성가스 내 CO와 H2로 분리되어 더 높은 바이오매스 가스화 효율을 얻을 수 있다. 최근 Iron-based 촉매는 타르 분해 반응에 대한 효과가 보고되고 있으며, 열적 안정성이 우수하다고 알려져 있다. 본 연구에서는 Fe 성분을 함유하고 있는 염색슬러지의 회분을 이용하여 대표적인 타르 성분으로 알려진 벤젠의 수증기 개질 반응 특성에 대하여 알아보았다. 또한 최종적으로 촉매 활성을 잘 표현하는 Kinetic을 개발하였다. 염색슬러지 회분을 활용한 타르의 수증기 개질 반응은 weight hour space velocity(WHSV) 및 반응 온도에 대하여 수행 되었다. 염색슬러지 회분을 이용한 모사타르인 벤젠의 최대 분해 효율은 900℃ 조건에서 약 40%로 분석되었다. 상용촉매에 비해 분해 효율은 낮지만 폐기물 유래 촉매로서 추가비용이 들지 않고 공급량이 충분하기 때문에 접촉시간을 충분히 유지한다면 분해 효율은 더욱 증가할 것으로 기대된다. Kinetic 반응의 Power law model를 통해 측정된 벤젠과 수증기의 반응 차수는 각각 0.43과 0이었으며, 활성화 에너지는 187.6 kJ mol-1로 측정되었다.
        37.
        2013.11 서비스 종료(열람 제한)
        폐기물 자원화시설 및 산업시설에서는 유기성 및 무기성 악취물질이 동시에 발생된다. 악취를 처리하기 위하여 많은 연구가 진행되었지만 기존 연구는 무기성 또는 유기성 악취물질을 단독으로 처리하는 공정 중심으로 개발되었다. 악취를 처리하기 위한 공정에는 물리・화학・생물학적인 공정이 존재한다. 이 중 생물학적 공정인 바이오필터는 경제적이고 2차 오염물질의 발생이 상대적으로 적다. 본 연구에서는 바이오필터를 이용하여 유기성 악취물질인 톨루엔과 무기성 악취물질인 암모니아를 동시에 처리하였으며 시간에 따른 처리특성과 반응기 유입부, 중간, 유출부의 미생물 분포 특성을 파악하고자 하였고 그에 따른 Kinetic 실험도 하였다. 실험에 사용된 바이오필터 반응기의 규격은 내부직경 0.1 m, 높이 1.3 m 이었다. 담체의 재질은 1 cm₃의 폴리우레탄 폼을 이용하였으며 충전된 높이는 0.6 m, 충전된 부피는 0.0047 m₃ 이었다. 톨루엔 가스 유입 농도는 50 ppm(유입부하량 5.63 g/m₃/hr)에서 150 ppm(유입부하량 16.88 g/m₃/hr)까지 순차적으로 증가시킨 후 100 ppm(유입부하량 11.25 g/m₃/hr)으로 유지하였다. 암모니아 가스 유입농도는 591 ppm(유입부하량 12.29 g/m₃/hr)으로 유지하였으며 총 가스유량은 2 L/min, EBRT(Empty bed retention time) 2.35 min으로 설정하였다. 톨루엔 가스는 GC/FID로 분석하였으며, 암모니아 가스는 대기오염공정시험법에 준하여 분석하였다. 미생물 분석은 톨루엔 가스 유입농도 100 ppm에서 처리효율이 안정적으로 유지될 때 담체를 채취한 후 PCR-DGGE를 실시하였다. Kinetic 실험은 반응기 유입부, 중간, 유출부에서의 순차적인 처리효율을 파악하였다. 120 일의 연속실험 결과 암모니아는 99%이상 처리효율을 보였으며, 톨루엔은 100 ppm까지 95% 이상의 효율을 나타냈지만 150 ppm에서 74%의 처리효율을 나타내었다. 반응기의 유입부, 중간, 유출부 담체의 미생물 분포를 파악한 결과, 가스유입부에서 암모니아 분해미생물이 우점종으로 나타났으며 중간, 유출부에서는 톨루엔 분해미생물이 우점종으로 나타났다. Kinetic 실험 결과, 가스유입부에는 암모니아 분해미생물이 우점종으로 나타나 42%의 처리효율을 보였으며 충전된 담체의 중간에서 86%의 처리효율을 나타냈다. 톨루엔의 경우 유입부에서 20%, 중간 54%, 유출부에서 92%의 처리효율을 보였다.
        38.
        2013.11 서비스 종료(열람 제한)
        고분자 합성기술의 발전에 따른 플라스틱의 생산율이 높아짐에 따라 배출되는 폐 플라스틱의 다양성에 따른 환경오염 문제의 관심사로 대두되면서 폐 플라스틱 처리의 해결 필요성이 높아지고 있다. 화석연료의 고갈로 인하여 신재생에너지에 대한 관심이 높아지고 있는 현재 폐기물을 대상으로 하는 가스화 공정은 환경문제와 에너지 문제를 동시에 해결할 수 있는 공정 중 하나이다. 가스화는 소각기술과는 달리 열화학적 변환기술로서 환원성분위기에서 반응이 진행되므로 폐기물 내의 탄소 및 수소 성분은 일산화탄소 및 수소가 주성분인 고부가 가치의 가스를 생산하여 활용성이 높은 재생에너지를 생산하는 기술이다. 생산된 합성가스는 CO, H₂가 주성분으로서 다양한 공정을 거쳐 합성하면 다양한 원료 물질의 제조가 가능하다. 또한 친환경적인 수소생산을 위해서는 원료선정에 있어서 자원화 및 재생 가능한 원료로 활용하는 것이 바람직하며 이러한 측면에서 수소를 생산하는 다양한 방법 중 폐자원인 바이오매스 및 폐기물을 이용한 가스화를 통해 수소생산방식이 유용하다고 할 수 있다. 폐자원을 자원화 하는 경우 원료 비용 및 처리에 따른 비용절감 효과를 이룰 수 있다. 국내외에서 바이오매스 및 폐기물 각각의 원료에 대한 가스화 실험은 많이 수행되었으나 혼합원료에 대한 연구는 매우 적은 상황이다. 본 연구에서는 목질계 바이오매스 중 반응이 용이한 톱밥과 폐플라스틱 중 많은 비중을 차지하는 polypropylene, polyethylene을 혼합비율에 따른 가스화 반응특성을 알아보는 연구를 수행하였다. 폐 플라스틱 가스화를 통하여 저 발열량을 가지는 물질과 함께 넣어줌으로써 고발열량의 생성물을 생성시켜 줄 것으로 사료된다. 이를 이용하여 합성가스 조성, 탄소전환율, 냉가스효율등의 가스화 효율을 연구하고자 한다. 혼합가스화의 변수별 가스화반응 특성을 알아보기 위해 회분식 가스화 반응기를 이용하여 실험을 수행하였으며 시료 입자크기에 따른 영향을 최소화하기 위해 입자크기를 균일하게 분쇄, 혼합하여 사용하였다. 가스화의 변수는 반응온도와 Equivalence Ratio, 시료혼합비율이며, 각각의 변화에 따른 합성가스 조성 및 수소수율, 일산화탄소 수율변화 등 실험적인 가스조성 변화의 영향을 파악하여 최적 원료 혼합조건을 파악하였다.
        39.
        2013.10 KCI 등재 서비스 종료(열람 제한)
        In this study, the feasibility of the biogas production by anaerobic digestion with agricultural byproducts, which are stems and leaves of hot pepper or sweet pepper from one of the agricultural villages in South Korea, was investigated. The physico-chemical compositions of the agricultural byproducts of hot and sweet pepper were analyzed and they were found to be favorable with anaerobic digestion. Theoretical methane potentials of the test materials were estimated as 393.1 L CH4/kg VS for hot pepper and 372.6 L CH4/kg VS for sweet pepper. Biochemical methane potentials were analyzed by Biochemical Methane Potential (BMP) test and those of hot pepper and sweet pepper were 107.9 and 193.4 L CH4/kg VS, respectively. Silage was chosen to be long-term storage method for biogasification. Biochemical methane potential of hot pepper was increased by silage storage, while that of sweet pepper was decreased. In the case of silage chopping size, ensiled material with 30 mm size showed higher biochemical methane potential than that with 3 mm size. Most of test materials showed higher biochemical methane potentials with microbial additives containing Bacillus Circulans than that containing Bacillus Subtilis.
        40.
        2013.06 KCI 등재 서비스 종료(열람 제한)
        The study aims to analyze economic of biogas plant in transition of recognition that waste resources has become renewable energy. The traditional investment valuation method using the NPV or IRR has a limitation in a sense that uncertainty of the future is not reflected. Hence, the purpose of this paper is to assess the value of the business by taking advantage of the real option. Biogas plant simulation is applied to the case of Garak Market using the binomial options among a variety of real options. With this analysis, it is assessed that operational expand option is the largest of the value of the binomial options.
        1 2 3 4