검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 55

        21.
        2015.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study was to apply the joint mobilization technique to the level of segments with pain and to the level of segments with hypomobility respectively and compare the immediate effects of the joint mobilization technique on the pain, the active cervical range of motion (ROM), and treatment satisfaction of patients with acute mechanical neck pain. After the baseline assessment, forty-two patients were randomized into two groups: a painful group (n1=21) that received joint mobilization at the most painful cervical spine level and a hypomobile group (n2=21) that received joint mobilization at the most hypomobile cervical level. The patients received an intervention that applied unilateral posterior-anterior gliding for 5 minutes and two repetitions of 10 times of active extension motion with distraction. In the Wilcoxon signed-rank test, the painful group and the hypomobile group were improved significantly in all pain variables (p<.001), while the painful group was improved significantly in the active cervical flexion (p<.001), extension (p<.001), left side-bending (p<.01), right side-bending (p=.001), left rotation (p<.001), and right rotation (p<.001). The hypomobile group was significantly improved in active cervical flexion (p=.001), extension (p<.001), left side-bending (p<.05), right side-bending (p=.001), left rotation (p=.001), and right rotation (p<.01) after intervention. In the Mann-Whitney U test, there was no significant difference in any of the dependent variables after the intervention between the two groups, but the painful group was slightly superior to the hypomobile group in all variables except for the right lateral flexion ROM and treatment satisfaction. These outcomes suggest that the cervical joint mobilization may be applied to either the level of painful segments or the hypomobile segments for the treatment of patients with acute mechanical neck pain.
        4,200원
        22.
        2014.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The present study deals with the effects of tempering treatment on the microstructure and mechanical properties of Cu-bearing high-strength steels. Three kinds of steel specimens with different levels of Cu content were fabricated by controlled rolling and accelerated cooling, ; some of these steel specimen were tempered at temperatures ranging from 350˚C to 650˚C for 30 min. Hardness, tensile, and Charpy impact tests were conducted in order to investigate the relationship of microstructure and mechanical properties. The hardness of the Cu-added specimens is much higher than that of Cu-free specimen, presumably due to the enhanced solid solution hardening and precipitation hardening, result from the formation of very-fine Cu precipitates. Tensile test results indicated that the yield strength increased and then slightly decreased, while the tensile strength gradually decreased with increasing tempering temperature. On the other hand, the energy absorbed at room and lower temperatures remarkably increased after tempering at 350˚C; and after this, the energy absorbed then did not change much. Suitable tempering treatment remarkably improved both the strength and the impact toughness. In the 1.5 Cu steel specimen tempered at 550˚C, the yield strength reached 1.2 GPa and the absorbed energy at -20˚C showed a level above 200 J, which was the best combination of high strength and good toughness.
        4,000원
        23.
        2014.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Microstructural and mechanical characteristics of Al-6Si-2Cu alloy for lightweight automotive parts were investigated. The test specimens were prepared by gravity casting process. Solution heat treatments were applied to as-cast alloys to improve mechanical properties. The microstructure of the gravity casting specimen presents a typical dendrite structure, having a secondary dendrite arm spacing (SDAS) of 37μm. In addition to the Al matrix, a large amount of coarsened eutectic Si, Al2Cu intermetallic phase, and Fe-rich phases were identified. After solution heat treatment, single-step solution heat treatments were found to considerably improve the spheroidization of the eutectic Si phase. Two-step solution treatments gave rise to a much improved spheroidization. The mechanical properties of the two-step solution heat treated alloy have been shown to lead to higher values of properties such as tensile strength and microhardness. Consequentially, the microstructural and mechanical characteristics of Al alloy have been successfully characterized and are available for use with other basic data for the development of lightweight automotive parts.
        4,000원
        24.
        2014.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Salt bath heat treatment is usually used but recently vacuum heat treatment is increased for the heat treatment of hot work die steels. The differences in two heat treatment processes were compared by testing the mechanical properties of heat treated products. With two different features of processes, mechanical properties such as hardness, tensile strength and impact strength of products show very different results. “In this study, salt bath heat treated products” showed higher tensile strength and impact strength than vacuum heat treated products but hardness was not much different. These lower mechanical properties of vacuum heat treated products are due to differences in heating and quenching process
        4,000원
        25.
        2013.10 구독 인증기관·개인회원 무료
        This study was conducted to establish the optimized protocol for cytoplasm isolation of bee pollen. Data of biochemical parameters and amino acid profiles were obtained from acorn pollen grains treated with pulverization or lyophilization. Contents of moisture, ash, crude protein and crude fat of acorn pollen were 11.7%, 2.6%, 24.1% and 11.8%, respectively. After pulverizing, content of crude protein was decreased to 23.8% while crude fat was 22.5% which means 90% increase. Also content of crude protein was increased to 26.5% in case of the lyophilized pollen. Amino acids such as aspartic acid, glutamic acid, leucine and arginine were extensively found in acorn pollen while histidine, methionine and cystine were infrequent. The pulverized pollen was increased by 2.6% in the total amino acid percentage while the lyophilized pollen increased by 11.8% compared to the untreated pollen.
        26.
        2013.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, the effects of cryogenic treatment cycles on the residual stress and mechanical properties of 7075 aluminum alloy (Al7075) samples, in the form of a tube-shaped product with a diameter of 500 nm, were investigated. Samples were first subjected to solution treatment at 470˚C, followed by cryogenic treatment and aging treatment. The residual stress and mechanical properties of the samples were systematically characterized. Residual stress was measured with a cutting method using strain gauges attached on the surface of the samples; in addition, tensile strength and Vickers hardness tests were performed. The detailed microstructure of the samples was investigated by transmission electron microscopy. Results showed that samples with 85 % relief in residual stress and 8% increase in tensile strength were achieved after undergoing three cycles of cryogenic treatments; this is in contrast to the samples processed by conventional solution treatment and natural aging (T4). The major reasons for the smaller residual stress and relatively high tensile strength for the samples fabricated by cryogenic treatment are the formation of very small-sized precipitates and the relaxation of residual stress during the low temperature process in uphill quenching. In addition, samples subjected to three cycles of cryogenic treatment demonstrated much lower residual stress than, and similar tensile strength compared to, those samples subjected to one cycle of cryogenic treatment or artificial aging treatment.
        4,000원
        27.
        2012.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, mechanical tests and microstructural analyses including TEM analyses with EDX of precipitates in modified 9Cr-1Mo steel were carried out to determine the cause of embrittlement observed after heat-treatment, which limits the usage of the alloy for power plants. Mod. 9Cr-1Mo steel specimens at austenite temperature were quenched to the molten salt baths at 760˚C and 700˚C, in which the specimens were kept for 10 min ~ 10 hr with subsequent air-cooling. Impact tests showed that the impact value dropped abruptly when the specimens were kept longer than 30 min at ~760˚C reaching to minima in about 1 hr, and then increasing at further retention. The tensile strength of the specimens reached the minimum value without much change afterward, whereas the values of elongation showed the same trend as that of the impact value. The isothermally heat-treated steel at 700˚C also showed a minimum impact value in about 1 hr. These results suggest that the isothermal heattreatment at 760 and 700˚C for about 1 hr induces temporal embrittlement in Mod. 9Cr-1Mo steel. The microstructural examination of all the specimens with extraction replica of the carbides revealed that the specimens with temporal embrittlement had Cr2C, indicating that the cause of the embrittlement was the precipitation of the Cr2C. In addition, TEM/EDX results showed that the Fe/Cr ratio was 0.033 to 0.055 for Cr2C, whereas it was 0.48 to 0.75 for Cr23C6, making the distinction of the Cr2C and Cr23C6 possible even without direct electron diffraction analyses.
        4,000원
        28.
        2011.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this present work, the effect of additional heat-treatment (AHT) in the range from 1800℃ to 2400℃ on the chemical composition, morphology, microstructure, tensile properties, electrical resistivity, and thermal stability of commercial polyacrylonitrile (PAN)-based carbon fibers was explored by means of elemental analysis, electron microscopy, X-ray diffraction analysis, single fiber tensile testing, two-probe electrical resistivity testing, and thermogravimetric analysis (TGA). The characterization results were in agreement with each other. The results clearly demonstrated that AHTs up to 2400℃ played a significant role in further contributing not only to the enhancement of carbon content, fiber morphology, and tensile modulus, but also to the reduction of fiber diameter, inter-graphene layer distance, and electrical resistivity of "as-received" carbon fibers without AHT. The present study suggests that key properties of commercial PAN-based carbon fibers of an intermediate grade can be further improved by proprietarily adding heat-treatment without applying tension in a batch process.
        4,000원
        29.
        2011.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The effect of heat treatment on the micro-structures and the mechanical properties of 0.002% boron added low carbon steel was investigated. The tensile strength reached the peak at about 880-890˚C with the rising quenching temperature and then the hardness decreased sharply, but the tensile strength hardly decreased. The tensile and yield strength decreased and the total elongation increased with a rising tempering temperature, but the tensile and yield strength sharply fell and the total elongation prominently increased from above a 400-450˚C tempering temperature. Tempered martensite embrittlement (TME) was observed at tempering condition of 350-400˚C. In the condition of quenching at 890˚C and tempering at 350˚C, the boron precipitates were observed as Fe-C-B and BN together. The hardness decreased in proportion to the tempering temperature untill 350˚C and dropped sharply above 400˚C regardless of the quenching temperature.
        4,000원
        30.
        2009.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The thermal stability and mechanical properties of Nephila clavata and Bassaniana decorata spider silks were measured and compared with those of aramid and polyester fibers. The thermal stability of the spider silk was lower than those of the commercial aramid and polyester fibers. However, the mechanical properties of the spider silk were far superior to that of the polyester fiber. The effect of the water content of the spider silk on its thermal stability and mechanical property was examined by conducting the silk to heat treatment at 100℃ under vacuum for various times. The results indicated that spider silk subjected to heat treatment for 1.5 hr had excellent thermal stability and mechanical property.
        4,000원
        31.
        2006.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The microstructural and mechanical properties of Al-Si alloyed powder, prepared by gas atomization fallowed by hot extrusion, were studied by optical and scanning electron microscopies, hardness and wear testing. The gas atomized Al-Si alloy powder exhibited uniformly dispersed Si particles with particle size ranging from 5 to . The hot extruded Al-Si alloy shows the average Si particle size of less than . After heat-treatment, the average particle size was increased from 2 to . Also, mechanical properties of extruded Al-Si alloy powder were analyzed before and after heat-treatment. As expected from the microstructural analysis, the heat-treated samples resulted in a decrease in the hardness and wear resistance due to Si particle growth. The friction coefficient of heat-treated Al-Si alloyed powder showed higher value tough all sliding speed. This behavior would be due to abrasive wear mechanism. As sliding speed increases, friction coefficient and depth and width of wear track increase. No significant changes occurred in the wear track shape with increased sliding speed.
        4,000원
        32.
        2006.04 구독 인증기관·개인회원 무료
        is an extremely high alloyed PM material containing about 20 to 35 wt.% titanium based carbides. Such materials are designed to achieve a high wear resistance, but the high volume fraction of hard phases causes a comparable low ductility in case of tensile loading. In the present study the mechanical properties of different Ferro-Titanit grades (variations in chemical composition and in heat treatment) were investigated by means of tensile tests. The mechanical properties and the fracture behaviour will be related to the chemical composition, the heat treatment and the microstructure.
        34.
        2005.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Four different mechanical alloying(MA) processes were employed to fabricate very fine intermetallic compound particles dispersed Al composite materials(MMC) with Al-4at.%Zr composition. Phase transformations including phase stability during MA and heat treatment processes were investigated. Part of Zr atoms were dissolved into Al matrix and part of them reacted with hydrogen produced by decomposition of PCA(methanol) to form hydride during first MA process. These hydrides disappeared when alloy powders were heat treated at . Stable dispersoids with structure were formed by heat treating the mechanically alloyed powders at . On the other hand, metastable dispersoids with structure were formed during first MA of powers with Al-25at.%Zr composition. These metastable dispersoids transformed to stable with structure when heat treated above .
        4,000원
        35.
        2004.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The effects of fiber surface-treatment and sizing on the dynamic mechanical properties of unidirectional and 2-directional carbon fiber/nylon 6 composites by means of dynamic mechanical analysis have been investigated in the present study. The interlaminar shear strengths of 2-directional carbon/nylon 6 composites sized with various thermosetting and thermoplastic resins are also measured using a short-beam shear test method. The result suggests that different surface-treatment levels onto carbon fibers may influence the storage modulus and tan δ behavior of carbon/nylon 6 composites, reflecting somewhat change of the stiffness and the interfacial adhesion of the composites. Dynamic mechanical analysis and short-beam shear test results indicate that appropriate use of a sizing material upon carbon fiber composite processing may contribute to enhancing the interfacial and/or interlaminar properties of woven carbon fabric/nylon 6 composites, depending on their resin characteristics and processing temperature.
        4,000원
        38.
        2003.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The composites fabricated by powder in sheath rolling method were cold-rolled by 50% reduction and annealed for 1.8 ks at various temperatures ranging from 200 to 50, for improvement of the mechanical properties. The mechanical properties and texture of the composites after rolling and annealing were investigated. The tensile strength of the composites increased significantly due to work hardening after cold rolling, however it decreased due to restoration after annealing. The strength of the composites was improved by thermo mechanical treatment. On the other hand, the texture evolution with annealing temperatures wa,i different between the unreinforced material and the composites. The unreinforced material showed a deformation (rolling) texture of which main component is {112}<111> at annealing temperatures up to 30. However, the composites have already exhibited a recrystallization texture of which main component is {001}<100> after annealing at 20. This proves that the critical temperature for recrystailization is lower in the composites than in the unreinforced ones.
        4,000원
        40.
        2002.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The microstructures and properties of TiC dispersed nickel-base alloy were studied in this work. The alloy prepared by powder metallurgical processing was solution treated, 1st-aged at for 16 hours, and then 2nd-aged at for 4 hours. Microstucture of sintered specimen showed that TiC particles are uniformly dispersed in Ni base alloy. In the specimen aged at for 8 hours, the fine (Al,Ti) precipitates with round shape are observed and the very fine (Al,Ti) particles with round shape are precipitated in the specimen aged at for 4 hours. The presence of precipitates in TiC/Ni base alloy increased the hardness and wear resistance of the specimen. The hardness and wear resistance of the Ni-base with TiC are higher than those of conventional Ni-base superalloy X-750 because of dispersion strengthening of TiC particles. The hardness, transverse rupture strength and resistance of the specimen 2nd-aged at for 4 hours are higher than those of 1st-aged specimen due to ultrafine (Al,Ti) precipitates.
        4,000원
        1 2 3