The traffic accidents in large cities such as Pusan metropolitan city have been increased every year due to increasing of vehicles numbers as well as the gravitation of the population. In addition to the carelessness of drivers, many meteorological factors have a great influence on the traffic accidents. Especially, the number of traffic accidents is governed by precipitation, visibility, humidity, cloud amounts and temperature, etc.
In this study, we have analyzed various data of meteorological factors from 1992 to 1997 and determined the standardized values for contributing to each traffic accident. Using the relationship between meteorological factors(visibility, precipitation, relative humidity and cloud amounts) and the total automobile mishaps, an experimental prediction formula for their traffic accident rates was seasonally obtained at Pusan city in 1997.
Therefore, these prediction formulas at each meteorological factor may be used to predict the seasonal traffic accident numbers and contributed to estimate the variation of its value according to the weather condition in Pusan city.
The purpose of the present study is to develope the estimation scheme for sensible heat flux by semi-empirical approach using routine meteorological data such as solar radiation and air temperature. To compare observed sensible heat flux with estimated sensible heat flux, the sensible heat fluxes were measured by three dimensional sonic anemometer-thermometer. The field observation was performed during 1 year from December 1, 1995 to November 30, 1996 on a rice paddy field in Chunchon basin. The heat fluxes were measured at a heights of 5m and mean meteorological variables were obtained at two levels, 2.5m(or 1.5m) and 10m. Since condition of rice paddy field such as, wetness of the field, roughness length, vary widely, we devided annual data to 5 periods. Comparing with two sensible heat fluxes, the results showed that the correlation coefficients were more than 0.86. Thus, we can conclude that the estimation method of sensible heat fluxes using routine meteorological data is practical and reliable enough.
A series of meteorological observation using automation weather station(AWS) carried out to investigate characteristics of nocturnal meteorological parameters for 16∼17 June 1998 at Buljeongdong mountain slope, Kyungbuk. Dry temperature at valley was lower than mountain because of high lapse rate at valley, so the strong inversion layer occurrenced at mountain slope for nighttime. Contrary of dry temperature, relative humidity of valley was higher than mountain for nighttime. Wind speed at valley from sunset to next day morning was lower than mountain, but that of valley after sunrise was higher than mountain. Wind direction at valley for all observation time were southeasterlies(SE), that of mountain for nighttime were northeasterlies(NE) or northnorthwesterlies(NNW), and that of mountain after sunrise were irregular. Vapor pressure at valley for all observation time was higher mountain, particularly the difference was high for nighttime.
The concentration of air pollution in a large city such as Pusan has been increased every years due to the increase on fuel consumption at factories and by vehicles as well as the gravitation of the population.
In this study, we have analyzed NO2 concentration data and various data of meteorological factors during 1994-1997 to investigate the characteristics of NO2 concentration and how the high NO2 concentration is generated under the meteorological condition. According to the study, NO2 peak concentration at most sites occurred about 1h later after the rush hour. In the characteristics of emissions in sites, sinpyeong- dong was highly contributed to point source while the other sites were highly contributed to line source. The high NO2 concentration had high generation probability when temperature contained typical seasonal characteristics and wind speed was low.
Using the relationship between meteorological factors and the daily average NO2 concentration, correlation analysis was practiced. The seasonal variation of the daily average NO2 concentration was correlated with air temperature, solar radiation and wind speed, but the correlation coefficient between meteorological factors and the daily average NO2 concentration was not so much high. Thus we have known that the daily average NO2 concentration is partially explained by meteorological factors.
This study was performed to investigate the characteristics of nocturnal maximum ozone occurrence and the meteorological relevance using to hourly ozone data and meteorological data for 1995∼1996 in Pusan coastal area.
Kwangbokdong showed the highest occurrence of nocturnal maximum ozone as 36.9%, and Deokcheondong showed the lowest occurrence(9.2%) for research period in Pusan. The occurrence rates of nocturnal maximum ozone concentration were decreased toward land area. The low maximum temperature, high minimum temperature, low diurnal range, high relative humidity, high wind speed, high cloud amount, low sunshine and low radiation were closely related to the main meteorological characteristics occurring the nocturnal maximum concentration of ozone. It was shown that normal daily variation of ozone concentration by strong photochemical reaction at the before day of nocturnal maximum ozone. The concentration of nocturnal maximum ozone were occured by entrainment of ozone from the upper layer of developed mixing layer. There are no ozone sources near the ground at night, so that the nighttime ozone should be entrained from the upper layer by forced convection.
A porous α-alumina tube of 2.5 ㎜ O.D. and 1.9 ㎜ I.D. was used as the support of an inorganic membrane. Macropores of the tube, about 150 nm in size, were plugged with silica formed by thermal decomposition of tetraethylorthosillcate at 600℃. The forced cross-flow CVD method that reactant was evacuated through the porous wall of the support was very effective in plugging macropores. The H_2 permeance of the prepared membrane was of the order of 10^-8 mol s^-1 m^-2 . Pa^-1, while the N_2 permeance was below 10^-11 mol. s^-1 . m^-2 . Pa^-1 at 600℃. This was comparable to that of silica-modified Vycor glass whose size was 4 nm.
Meteorological measurements were carried out in the basin of Cheong-Kwan located Yang-San near Pusan city, from Oct. 30 to Nov. 1, 1988. According to the measured data, we verified the close relationship between the variation of nocturnal inversion layer and the meteorological elements. The nocturnal inversion layer by radiative cooling in this site extends up to 130 meters or so. And the nocturnal jet appears just above or at the top of the inversion layer, and the stronger of the prevailing wind blows, and the lower of the jet level appears. Some meteorological features such as heating, cooling etc., began to change in or in the slightly higher level of the inversion layer, when they are formed, reinforced and disappeared. And the air in the basin preserves its character because it is not affected by local scale air flow.
There is a limitation for a ship which is sailing on sea to gather weather and seastate informations. To make up for this weakness, land organizations can gather wider variety of information and evaluate the seakeeping performanceon ship. And supply this information to the ship. In this study, calculated the response amplitude of shp motions with the weather information provided in real time, the nominal speed loss with obtaining increase of resistance caused by wave and stochastic process of the seakeeping performance elements. And the results have been achieved to develop a system which can evaluate the synthetic seakeeping performance. Using this system, the results have been studied to determine the feasibility of using simulation in actural operation onboard ship.
This study was conducted to understand the effects of weather and tapping date on yield and quality of lactree(Rhus verniciflua) sap yield showed a significant positive correlation with the minimum temperature of one day before sap collection at 1% level and with theminimum humidity of theday of sap collection at 5% level. However, the differences between the maximum and the minimum temperatures and humidities of the day of sap collection were negatively correlated with the sap yield at 5% level. Multiple regression analysis indicated that the minimum temperature of one day bofore sap collection and the minumum humidity of the day sap collection were important factors for increasing sap yield. The high sap yield of lactree by Japanese tapping method was recorded during mid-July and early August. Seasonal variation in lactree sap constituents was observed. The sap collected on 15th of August contained the highest urushiol content (68.3%) and the lowest water content resulting in high quality of lactree sap. By reversed-phase HPLC analysis, fove urushiol components were separated from each other depending on the number of doulbe bonds in the side-chain , and seaxonal variation of urushiol composition was noticed. The 3-C15 triene content fo the sap collected on 5th of July was the highest(77.56%) indicating the major component of urushiol which affects lactree sap quality.
Diurnal variations of air quality due to the characteristic features of local weather phenomena over Kunsan, Taegu, and Pohang are analyzed using various synoptic wind fields and the characteristics of local weather during the period of 1990 to 1992.
The air pollutants analyzed are sulfur dioxide(SO_2), nitrogen dioxide(NO_2), and oxidants (O_3). The synoptic wind fields estimated at over the 850 hPa geopotential height are divided in terms of four wind directions and two wind speed categories for each season. The synoptic weather conditions are also classified into two categories depending on the total cloud amounts.
The present study shows that the SO_2 concentration over Kunsan, and Taegu was maximum at the two or three hours after sunrise and second primary was three or four hours after sunset. On the other hand, its concentration over Kunsan was maximum at 1900 LST or 2000 LST. The O_3 concentration over the three cities shows its maximum in the afternoon when the solar radiation is strong. The NO_2 concentration over Kunsan shows in reverse proportion to the 0_3 concentration over the Kunsan.
This study was carried out to identify how soybean seed protein concentration is influenced by climatic factors. Twelve lines selected for seed protein concentration were studied in 13 environments of North Carolina. Sensitivity of seed protein concentration, total seed protein, and seed yield to climatic variables was investigated using a linear regression model. Best response models were determined using two stepwise selection methods, Maximum R-square and Stepwise Selection. There were wide climatic effects in seed protein concentration, total protein and seed yield. The highest protein concentration environment was characterized by the most high temperature days(HTD) and the smallest variance of average daily temperature range (VADTRg), while the lowest protein concentration environment was distinguished by the fewest HTD and the largest VADTRg. For protein concentration, all lines responded positively to average maximum daily temperature(MxDT), HTD, and average daily temperature range(ADTRg) and negatively to ADRa, while they responded positively or negatively to average daily temperature(ADT), variance of average minimum daily temperature (VMnDT), and VADTRg, indicating that genotypes may greatly differ in degrees of sensitivity to each climatic variable. Eleven lines seemed to have best response models with 2 or 3 variables. Exceptionally, NC106 did not show a significant sensitivity to any climatic variable and thus did not have a best response model. This indicates that it may be considered phenotypically more stable. For total seed protein and seed yield, all the lines responded negatively to both ADTRg and VADRa, suggesting that synthesis of seed components may increase with less daily temperature range and less variation in daily rainfall.
For the prediction of multi-site rainfall with radar data and ground meteorological data, a rainfall prediction model was proposed, which uses the neural network theory, a kind of artifical intelligence technique. The input layer of the prediction model was constructed with current ground meteorological data, their variation, moving vectors of rainfall field and digital terrain of the measuring site, and the output layer was constructed with the predicted rainfall up to 3 hours. In the application of the prediction model to the Pyungchang river basin, the learning results of neural network prediction model showed more improved results than the parameter estimation results of an existing physically based model. And the proposed model comparisonally well predicted the time distribution of rainfall.
본 연구는 콩계통들의 지방함량이 서로 다른 가상요인에 어떻게 영향을 받는 지를 규명하기 위해 미국 노스캐롤라이나지방의 5개 지역에서 3년에 걸쳐 수행하였다. 각 계통의 지방함량 및 지방수량들이 기상요인에 대한 Linear response가 조사되었고, 또한 최저기상 반응모델을 결정하기 위해 Stepwise Selection Program이 사용되었다. 콩지방함량, 지방수량은 기상 요인인 온도와 강우량에 의해 크게 영향을 받았으며 성숙시기에 온도가 가장 높고, 최고최저 온도범위가 가장 작은 환경에서 지방함량이 가장 낮게 나타났고, 최저온도 변이가 가장 작고 강우량변이가 가장 큰 환경에서 지방수량이 가장 높게 나타났다. 계통들의 대부준으 지방함량이 MxDT, HTD, ADT, ADTRg에 반비례하는 경향을 나타내었으며 이는 성숙시기에 온도가 높아질수록 지방함량이 감소한다는 것을 의미한다. 그러나 NC107은 MxDT, ADT에 비례하는 경향을 보였다. 모든 계통들이 VMnDT, VADTRg, ADRa에 비례하는 경향을 나타내었고 이는 최저온도와 최고최저 온도범위의 변이가 클수록, 평균강우량이 많을수록 지방함량은 증가한다는 것을 의미한다. 11계통이 1개 내지 3개의 기상변수를 가지는 최적기상모델을 형성하였다. 그러나 NC109와 NC105는 모든 기상변수에 유의한 Linear 반응을 나타내지는 않았으나 전자는 2개의 기상변수를 가지는 최적기상모델을 형성하였고 후자는 가지지 않았다. 이는 NC109는 지방 함량이 아마도 기상변수 하나에 의한 영향보다도 2개 변수의 상호작용에 의한 영향이 큰 것으로 추측 할 수 있고, NC105는 지방함량이 기상환경에 상대적으로 더 안정하기 때문인 것으로 생각된다. 위와 같은 사실은 콩지방함량의 기상반응에 대한 품종적 차이가 상당히 크다는 것을 의미한다. 지방수량은 ADTRg와 VADRa에 반비례하는 경향을 나타내었으며 이는 최고최저 온도차이와 평균강수량 변이가 클수록 지방수량은 감소한다는 것을 의미한다.
Meteorological and flux data measured from semiarid watersheds (Lucky Hills and Kendall) during the summer rainy and winter periods were used to study the sensitivity of the those variables used in the estimation of evapotranspiration rates. Relative sensitivity was examined to compare the importance of four meteorological and flux variables (net radiation, wind speed, air temperature, and relative humidity) on Penman potential evapotranspiration (PET) estimation. The study results show that variations in Penman PET rates during the summer rainy period at both watersheds appears to be controlled by air temperature adn net radiation. During the winter period at both watersheds, variations in Penman PET rates appears to be controlled by relative humidity and air temperature.
Pusan is the largest coastal city with a population of about four million in Korea. Because of increased and confused traffic, photochemical air pollution become a major urban environmental problem recently. The photo-chemical air pollution weather forecasting method preciser than existing air pollution forecast method has been developed to forecast ozone episode days with meteorological conditions using the data measured at 7 air quality continuous monitoring stations from June to September using 2 years (1994, 1995).
The method developed in present study showed higher percentage correct and skill score than existing air pollution forecasting in KMA (Korea Meteorological Administration).