With the current trend of the fourth industrial revolution, machine learning technique is increasingly adopted in various water industry fields. In this review paper, recent studies using machine learning to predict flood, water consumption, water quality, and water treatment processes are summarized. In the typical water purification processes such as flocculation, disinfection, and filtration, machine learning was able to present high-accuracy prediction results for complex non-linear mechanisms. Hybrid machine learning methods, combining multiple algorithms, generally outperformed machine learning results using only one algorithm. A more microscopic machine learning approach can provide valuable information to the operators in the water industry.
This paper investigates the current status of Jeju special self-governing province (JSSGP)’s water infrastructure and recommends directions for improvement. JSSGP relies on groundwater for most of its water resources. Recently, water usage has been steadily increasing due to the increase of residents and tourists while the quality of groundwater has been steadily worsening. Deterioration in water quality of groundwater can be seen through the increase in concentration of nitrate nitrogen and microorganisms. To overcome such problems, water consumption must be reduced by water demand management in all fields including residential and agricultural water use. The quality of water resources should be preserved through the management of pollutants. For efficient management of water resources, great efforts should be made to reduce the leakage rates in household and agricultural water, which is currently at the highest level in the country. Furthermore, diversification of water intake sources other than groundwater is needed, especially for agricultural water supply. For water and sewerage facilities, compliance with drinking water quality standards and discharge water quality standards must be achieved through the optimization of operation management. This process requires recruiting professionals, improving existing workers' expertise, and improving facilities.
This study investgates Korean water technology through the water market perspective and analyses its competitiveness. Based on the water technology classification, water technology competitiveness is analysed through the technological influence index and market dominance index which are based on the extracted water technology patents from the US, Europe, Korea, and Japan for the last decade. As a result, the Korean water technology patents were lack in influence and competitiveness in global market considering the large volume of patents. There are two most tech-influential industries in Korea; manufacturing industry consisting pipes, sterilization, disinfection, and advanced water purification equipment, and construction industry including seawater desalination and water resource development. Due to the domestic usage of the patents, the Korean water technology patents scored low in global market PFS(Patent Family Size) index compared to their CPP(Cites Per Patent) index. The study is meaningful in a way that the analysis on Korean water technology competitiveness using water technology classification system and patent analysis was conducted based on the perspective of the global water market.
기후 변화는 비정상적인 날씨 패턴을 야기하며 연간 강수량에 지대한 영향을 미친다. 이와 더불어 산업화의 가속화는 에너지 수요를 증가시키며 석유화학 산업폐수의 누수와 유조선의 유출을 초래함으로써 수질 오염을 악화시킨다. 이러한 부정적인 여건 속에서 정수를 효율적으로 추출해내는 해결책을 강구하는 것이 요구된다. 기름/물 분리를 위해 화학적 침전 및 흡착에 의한 분리 등과 같은 방식을 운용할 수 있지만 분리막 기술이 비용 및 에너지 측면에서 더 효율적이다. 분리막의 양친성은 전기 전도성과 친수성이 뛰어난 MXene이라는 2차원소재를 도입하여 향상시킬 수 있다. 본 총설에서는 향상된 분 리막 성능의 사례를 크게 순수 MXene이 적용된 사례와 변형된 MXene이 적용된 사례로 나누어진 목차로 전개할 것이다. 복합 분리막을 제조하기 위해 다양한 고분자가 사용되었으며 각 사례에서 MXene은 특정 용도에 적합한 특성을 더욱 강화시켜 주었다.
전 세계적으로 물 위기인 상황에서 깨끗한 물에 대한 수요는 꾸준히 이어지고 있다. 이러한 상황에서 정수를 위한 멤브레인 분리 기술은 중요하다. 멤브레인의 오염 때문에 멤브레인의 분리 효과는 방해되고 있다. 이러한 문제를 해결하기 위해 최근에 여러 방법으로 평막에 패턴을 제공하는 연구와 실험이 수행되었다. 멤브레인의 패턴화는 오염을 줄일 뿐 아니라 방법과 재료에 따라 물투과 유속을 증가시켰다. 각각의 적용된 사례에서 증가된 표면적, 높은 물 투과도, 그리고 향상된 여과 사이클 등과 같은 효과를 보여주었다. 본 총설에서는 오염방지에 대한 패턴화 멤브레인의 효과를 소개하고 논의한다.
We use vdW-corrected density functional theory (DFT) calculations with additional electron distribution correction to study the water binding chemistry of an Au nanoparticle supported on CeO2(111) with a linear step-edge. The initial structural model of Au/CeO2 used for DFT calculations is constructed by stabilizing a Au9 nanoparticle at the linear step-edge on a CeO2(111) slab. The calculated binding energy of a water molecule clearly shows that the interfacial site between Au and CeO2 binds water more strongly than the binding sites at the surface of Au nanoparticle. Subsequent water dissociation calculation result shows that the interface-bound water can be relatively easily dissociated into–OH and –H, providing a hydroxyl group that can be utilized as an oxygen source for CO oxidation. Based on the low dissociation energy of the interface bound water molecule, we suggest that the water at the Au-CeO2 interface can facilitate further oxidation of Au-bound CO. Our results point out that Au-CeO2 interface-bound water is beneficial for low-temperature oxidation reactions such as the water-gas shift reaction or preferential CO oxidation reaction.
Identifying the water circulation status is one of the indispensable processes for watershed management in an urban area. Recently, various water circulation models have been developed to simulate the water circulation, but it takes a lot of time and cost to make a water circulation model that could adapt the characteristics of the watershed. This paper aims to develop a water circulation state estimation model that could easily calculate the status of water circulation in an urban watershed by using multiple linear regression analysis. The study watershed is a watershed in Seoul that applied the impermeable area ratio in 1962 and 2000. And, It was divided into 73 watersheds in order to consider changes in water circulation status according to the urban characteristic factors. The input data of the SHER(Similar Hydrologic Element Response) model, a water circulation model, were used as data for the urban characteristic factors of each watershed. A total of seven factors were considered as urban characteristic factors. Those factors included annual precipitation, watershed area, average land-surface slope, impervious surface ratio, coefficient of saturated permeability, hydraulic gradient of groundwater surface, and length of contact line with downstream block. With significance probabilities (or p-values) of 0.05 and below, all five models showed significant results in estimating the water circulation status such as the surface runoff rate and the evapotranspiration rate. The model that was applied all seven urban characteristics factors, can calculate the most similar results such as the existing water circulation model. The water circulation estimation model developed in this study is not only useful to simply estimate the water circulation status of ungauged watersheds but can also provide data for parameter calibration and validation.
기름/물 분리막은 다른 분리 기술들에 비해 낮은 에너지 비용과 높은 성능 수준을 갖고 있다. 초친수성과 수중에 서 소유성은 효과적인 기름/물 분리막을 개발하는 데 가장 중요한 요인으로 작용한다. 이와 더불어 방오속성과 생분해성도 효과 적인 기름/물 분리막을 개발할 때에 고려되는 중요한 요소들이다. 본 리뷰 논문에서는 다양한 화학성분과 형태를 변형시켜 개발된 기름/물 분리막의 특성과 분리 효율을 개선한 연구들을 소개한다.
This study covered the Mulmae, architectural drawing recorded on Yeonggeon-uigwes and Sanleung-uigwes during the late Joseon Dynasty. In uigwes, the term ‘Mulmae’ was used as a mixture until the 17th century, but from the 18th century, the term ‘Mulmae(勿乙每, 勿每, 水每)’ was unified into ‘Mulmae(水每)’. The paper of the Mulmae was made to be used during the construction period by using a thick oil paper called Yudun. Four Yudun were connected, and its size was 197.4×141cm, which was rather large. The Yingzaofashi(營造法式) of Song Dynasty describes how to draw a longitudinal section on a scale of 1/10. The scale of 1/10 was the maximum when comparing the size of the Mulmae with the buildings in uigwes. A sectional drawing of Gongpo in Geunjeongjeon was drawn on a scale of 1/10. There is a testimony that a senior carpenter drew a cross-section on a scale of 1/10. Therefore, it was determined that the scale of the longitudinal section drawn on the Mulmae paper was 1/10. The term 'the Mulmae' was used equally by carpenter active in Japanese colonial era. The scope of the painting was clarified from pillar to rafter. Uigwes records that the Mulmae was made for wood processing. Through this, it can be understood that the Mulmae painted the entire structure as a longitudinal section.
The purpose of this study is to analyze outcome of the project to improve old water supply facilities in Airforce Base to improve water revenue rate. To achieve the objective of this study, First, literature review is conducted to clearly define the concept of water revenue rate improve project. Second, WASCO project on 2 Airforce base review and smart water management pilot project on 1 Airforce base is conducted. Third, economical analysis of project is conducted to examine the outcome. As a result, WASCO and smart water management pilot project on Airforce base was effective to improve water revenue rate. Finally, the improvements were suggested after investigating the key factors on water revenue rate improve project. In the future, this study will be used as a baseline for developing water revenue rate improve project.