검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 337

        41.
        2021.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Expensive PCBN or ceramic cutting tools are used for processing of difficult-to-cut materials such as Ti and Ni alloy materials. These tools have the problem of breaking easily due to their high hardness but low fracture toughness. To solve these problems, cutting tools that form various coating layers are used in low-cost WC-Co hard material tools, and research on various tool materials is being conducted. In this study, binderless-WC, WC-6 wt%Co, WC-6 wt%Co-1 wt% Mo2C, and WC-6 wt%Co-2.5 wt% Mo2C hard materials are densified using horizontal ball milled WC-Co, WC-Co-Mo2C powders, and spark plasma sintering process (SPS process). Each SPSed Binderless-WC, WC-6 wt%Co-1 wt% Mo2C, and WC-6 wt%Co- 2.5 wt% Mo2C hard materials are almost completely dense, with relative density of up to 99.5 % after the simultaneous application of pressure of 60 MPa and almost no significant change in grain size. The average grain sizes of WC for Binderless- WC, WC-6 wt%Co-1 wt% Mo2C, and WC-6 wt%Co-2.5 wt% Mo2C hard materials are about 0.37, 0.6, 0.54, and 0.43 μm, respectively. Mechanical properties, microstructure, and phase analysis of SPSed Binderless-WC, WC-6 wt%Co-1 wt% Mo2C, and WC-6 wt%Co-2.5 wt% Mo2C hard materials are investigated.
        4,000원
        42.
        2021.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The penetration depth, bead height, width, and internal porosity were analyzed to select the perfect penetration conditions for the STS316L tube material with an outer diameter of 38.1mm and a thickness of 3.4 mm. The welding conditions to secure a penetration depth of 3.4mm or more were selected. In addition, a welding range in which underfill does not occur was selected. The range of the selected conditions is the condition of a welding speed of 0.75 to 1.25m/min with an output of 2.0kW. The selected welding conditions were applied to STS316L tube orbital welding, and as a result of cross-sectional inspection after welding, a welded part of less than 4% of complete penetration and porosity was secured. The strength of the weld was measured to be more than 800kgf, and the hardness of the weld was found to decrease compared to the base material. The decrease in the hardness of the weld is judged by the annealing effect of the heat treated base material.
        4,000원
        43.
        2021.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        알루미늄합금 6061-T6 판재에 대하여 마찰교반용접과 텅스텐 이너트 가스 용접의 교차 용접부의 미세조직과 기계적 특성에 있어서 용접 순서의 영향을 분석하기 위한 시험편을 성공적으로 제작하였다. FSW-ED 시험편이 다른 조합들보다 가장 좋은 기계적 특성을 나타내었다. 흥미롭게도, TIG-FSW ED 시험편이 FSW-TIG ED 시험편보다 높은 인장강도를 나타내었다. 용접부 경도의 경우, FSW 시편이 TIG-FSW 및 FSW-TIG 시험편보다 높은 값을 나타내었고, TIG-FSW 시험편이 FSW-TIG 시험편보다 높은 값을 나타내었다. FE-SEM을 이용한 인장 파면에 대한 관찰을 통하여, 모든 시험편에서 연성파괴를 나타내는 다양한 크기의 딤플들이 관찰되었다. FSW-TIG 시험편의 파면에서는 용융지(熔融池) 표면 영역에서 기공들이 관찰되는 반면, TIG-FSW 시험편에서는 기공의 형성은 관찰되지 않았다. 경도와 미세조직의 결과를 통해 TIG-FSW 공정이 FSW-TIG 공정보다 높은 인장강도를 확보할 수 있는 공정임을 확인하였다.
        4,000원
        44.
        2021.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, AlSi10Mg powders with average diameters of 44 μm are additively manufactured into bulk samples using a selective laser melting (SLM) process. Post-heat treatment to reduce residual stress in the as-synthesized sample is performed at different temperatures. From the results of a tensile test, as the heat-treatment temperature increases from 270 to 320oC, strength decreases while elongation significantly increases up to 13% at 320oC. The microstructures and tensile properties of the two heat-treated samples at 290 and 320oC, respectively, are characterized and compared to those of the as-synthesized samples. Interestingly, the Si-rich phases that network in the as-synthesized state are discontinuously separated, and the size of the particle-shaped Si phases becomes large and spherical as the heat-treatment temperature increases. Due to these morphological changes of Si-rich phases, the reduction in tensile strengths and increase in elongations, respectively, can be obtained by the post-heat treatment process. These results provide fundamental information for the practical applications of AlSi10Mg parts fabricated by SLM.
        4,000원
        45.
        2021.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        High-entropy alloys have excellent mechanical properties under extreme environments, rendering them promising candidates for next-generation structural materials. It is desirable to develop non-equiatomic high-entropy alloys that do not require many expensive or heavy elements, contrary to the requirements of typical high-entropy alloys. In this study, a non-equiatomic high-entropy alloy powder Fe49.5Mn30Co10Cr10C0.5 (at.%) is prepared by high energy ball milling and fabricated by spark plasma sintering. By combining different ball milling times and ball-topowder ratios, we attempt to find a proper mechanical alloying condition to achieve improved mechanical properties. The milled powder and sintered specimens are examined using X-ray diffraction to investigate the progress of mechanical alloying and microstructural changes. A miniature tensile specimen after sintering is used to investigate the mechanical properties. Furthermore, quantitative analysis of the microstructure is performed using electron backscatter diffraction.
        4,000원
        46.
        2021.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Powder quality, including high flowability and spherical shape, determines the properties of additively manufactured products. Therefore, the cheap production of high-quality powders is critical in additive manufacturing. Radio frequency plasma treatment is an effective method to fabricate spherical powders by melting the surface of irregularly shaped powders; in the present work, mechanically milled Zr powders are spheroidized by radio frequency plasma treatment and their properties are compared with those of commercial Zircaloy-2 alloy powder. Spherical Zr particles are successfully fabricated by plasma treatment, although their flowability and impurity contents are poorer than those of the commercial Zircaloy-2 alloy powder. This result shows that radio-frequency plasma treatment with mechanically milled powders requires further research and development for manufacturing low-cost powders for additive manufacturing.
        4,000원
        47.
        2021.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: To evaluate whether extracorporeal shock wave therapy (ESWT) in the pain point is a more effective treatment than the trigger point for myofascial pain syndrome (MPS) of the upper trapezius. Objects: The purpose of this study was to compare the most effective areas when applying extracorporeal shock wave therapy. Methods: A total of 30 patients with MPS were randomly assigned to the trigger point in the ESWT (n = 15) and pain point ESWT (n = 15) groups. Interventions in both groups were performed in one session, i.e., 2,000 shocks with 1.5 bar intensity. Pain and function were assessed using the visual analog scale (VAS) and cervical range of motion (ROM) and based on mechanical muscle properties. Statistical analysis was performed using the repeated measures two-way analysis of variance to determine the significance probability between pre- and post-test. Results: Changes in mechanical muscle properties were not statistically significant between the two groups. However, VAS and cervical ROM showed statistically significant differences at pre- and post-intervention, regardless of the group (p < 0.05). Conclusion: Although no significant difference was observed in the intervention effect, applying an extracorporeal shock wave to the pain point rather than the pain trigger point should be considered in order to save time in effectively and accurately identifying the pain trigger point and site.
        4,000원
        48.
        2021.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Ti-based alloys are widely used in biomaterials owing to their excellent biocompatibility. In this study, Ti- Mn-Cu alloys are prepared by high-energy ball milling, magnetic pulsed compaction, and pressureless sintering. The microstructure and microhardness of the Ti-Mn-Cu alloys with variation of the Cu addition and compaction pressure are analyzed. The correlation between the composition, compaction pressure, and density is investigated by measuring the green density and sintered density for samples with different compositions, subjected to various compaction pressures. For all compositions, it is confirmed that the green density increases proportionally as the compaction pressure increases, but the sintered density decreases owing to gas formation from the pyrolysis of TiH2 powders and reduction of oxides on the surface of the starting powders during the sintering process. In addition, an increase in the amount of Cu addition changes the volume fractions of the α-Ti and β-Ti phases, and the microstructure of the alloys with different compositions also changes. It is demonstrated that these changes in the phase volume fraction and microstructure are closely related to the mechanical properties of the Ti-Mn-Cu alloys.
        4,000원
        49.
        2021.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Fabrication of a ferromagnetic composite powder for the magnesium and BaFe12O19 system by mechanical alloying (MA) is investigated at room temperature. Mixtures of Mg and BaFe12O19 powders with a weight ratio of Mg:BaFe12O19 = 4:1, 3:2, 2:3 and 1:4 are used. Optimal MA conditions to obtain a ferromagnetic composite with fine microstructure are investigated by X-ray diffraction, differential scanning calorimetry (DSC) and vibrating sample magnetometer (VSM) measurement. It is found that Mg-BaFe12O19 composite powders in which BaFe12O19 is dispersed in Mg matrix are successfully produced by MA of BaFe12O19 with Mg for 80 min. for all compositions. Magnetization of Mg- BaFe12O19 composite powders gradually increases with increasing the amounts of BaFe12O19, whereas coercive force of MA powders gradually decreases due to the refinement of BaFe12O19 powders with MA time for all compositions. However, it can be seen that the coercivity of Mg-BaFe12O19 MA composite powders with a weight ratio of Mg:BaFe12O19=4:1 and 3:2 for MA 80 min. are still high, with values of 1260 Oe and 1320 Oe compared to that of Mg:BaFe12O19=1:4. This clearly suggests that the refinement of BaFe12O19 powders during MA process for Mg:BaFe12O19=4:1 and 3:2 tends to be suppressed due to ductile Mg powders.
        4,000원
        50.
        2021.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Martensitic stainless steel is commonly used in the medical implant instrument. The alloy has drawbacks in terms of strength and wear properties when applied to instruments with sharp parts. 440C STS alloy, with improved durability, is an alternative to replace 420 J2 STS. In the present study, the carbide precipitation, and mechanical and corrosion properties of STS 440C alloy are studied as a function of different heat treatments. The STS 440C alloy is first austenitized at different temperatures; this is immediately followed by oil quenching and sub-zero treatment. After sub-zero treatment, the alloy is tempered at low temperatures. The microstructures of the heat treated STS 440C alloy consist of martensite and retained austenite and carbides. Using EDX and SADP with a TEM, the precipitated carbides are identified as a Cr23C6 carbide with a size of 1 to 2 μm. The hardness of STS 440C alloy is improved by austenitization at 1,100 oC with sub-zero treatment and tempering at 200 oC. The values of Ecorr and Icorr for STS 440C increase with austenitization temperature. Results can be explained by the dissolution of Cr-carbide and the increase in the retained austenite. Sub-zero treatment followed by tempering shows a little difference in the properties of potentiodynamic polarizations.
        4,000원
        51.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We investigate the effects of Yb2O3 and calcium aluminosilicate (CAS) glass as sintering additives on the sintering behavior of AlN. The AlN specimens are sintered at temperatures between 1700oC and 1900oC for 2 h in a nitrogen atmosphere. When the Yb2O3 content is low (within 3 wt.%), an isolated shape of secondary phase is observed at the AlN grain boundary. In contrast, when 3 wt.% Yb2O3 and 1 wt.% CAS glass are added, a continuous secondary phase is formed at the AlN grain boundary. The thermal conductivity decreases when the CAS glass is added, but the sintering density does not decrease. In particular, when 10 wt.% Yb2O3 and 1 wt.% CAS glass are added to AlN, the flexural strength is the highest, at 463 MPa. These results are considered to be influenced by changes in the microstructure of the secondary phase of AlN.
        4,000원
        52.
        2020.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Direct water quenching technique can be used in hot stamping process to obtain higher cooling rate compared to that of the normal die cooling method. In the direct water quenching process, setting proper water flow rate in consideration of material thickness and the size of the area directly cooled in the component is important to ensure uniform microstructure and mechanical properties. In this study, to derive proper water flow rate conditions that can achieve uniform microstructure and mechanical properties, microstructure and hardness distribution in various water flow rate conditions are measured for 3.2 mm thick boron steel sheet. Hardness distribution is uniform under the flow condition of 1.5 L/min or higher. However, due to the lower cooling rate in that area, the lower flow conditions result in a drastic decrease in hardness in some areas in the hot-stamped part, resulting in low martensite fraction. From these results, it is found that the selection of proper water flow rate is an important factor in hot stamping with direct water quenching process to ensure uniform mechanical properties.
        4,000원
        54.
        2020.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was conducted to compare the mechanical properties of NAB (Ni-Al-Bronze) material manufactured using WAAM (wire arc additive manufacturing) technology and cast NAB that has been used. Two types of mechanical property test pieces were collected from the deposited bulk NAB material according to the direction of deposition, and compared with each other. As a result of mechanical property evaluation, the deposited NAB exhibited anisotropy according to the direction of deposition, and showed high tensile strength, hardness, and shock absorption in the longitudinal direction of the welding line.
        4,000원
        55.
        2020.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Effects of Sc addition on microstructure, electrical conductivity, thermal conductivity and mechanical properties of the as-cast and as-extruded Al-2Zn-1Cu-0.3Mg-xSc (x = 0, 0.25, 0.5 wt%) alloys are investigated. The average grain size of the as-cast Al-2Zn-1Cu-0.3Mg alloy is 2,334 μm; however, this value drops to 914 and 529 μm with addition of Sc element at 0.25 wt% and 0.5 wt%, respectively. This grain refinement is due to primary Al3Sc phase forming during solidification. The as-extruded Al-2Zn-1Cu-0.3Mg alloy has a recrystallization structure consisting of almost equiaxed grains. However, the asextruded Sc-containing alloys consist of grains that are extremely elongated in the extrusion direction. In addition, it is found that the proportion of low-angle grain boundaries below 15 degree is dominant. This is because the addition of Sc results in the formation of coherent and nano-scale Al3Sc phases during hot extrusion, inhibiting the process of recrystallization and improving the strength by pinning of dislocations and the formation of subgrain boundaries. The maximum values of the yield and tensile strength are 126 MPa and 215 MPa for the as-extruded Al-2Zn-1Cu-0.3Mg-0.25Sc alloy, respectively. The increase in strength is probably due to the existence of nano-scale Al3Sc precipitates and dense Al2Cu phases. Thermal conductivity of the as-cast Al-2Zn-1Cu-0.3Mg-xSc alloy is reduced to 204, 187 and 183 W/MK by additions of elemental Sc of 0, 0.25 and 0.5 wt%, respectively. On the other hand, the thermal conductivity of the as-extruded Al-2Zn-1Cu-0.3Mg-xSc alloy is about 200 W/Mk regardless of the content of Sc. This is because of the formation of coherent Al3Sc phase, which decreases Sc content and causes extremely high electrical resistivity.
        4,000원
        56.
        2020.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        스테인레스 스틸에 대한 합성된 폴리우레탄-에폭시 수지의 기계적 특성은 SEM, FT-IR, 인장특성, 그리고 EIS에 의한 특정질량손실량, 입도분석 등에 의해 물성을 측정하였다. 친환경적인 NATM 도료에 관한 관심이 고조됨에 따라 스테인레스 등의 금속에 코팅하는 무용제 도료를 합성하였다. 폴리올, IPDI, 충진제, 실리콘 계면활성제, 촉매 등이 함유된 기존 중방식수지보다 폴리올, MDI, 충진제, 실리콘 계면활성제, 촉매가 함유되어 합성된 중방식수지의 도료가 온도변화에 따른 인장강도가 증가하였고, 전해성이 높은 용액 속에서 저헝력이 크게 측정되었으며, 내구력과 강도가 양호하였다. 견고한 NATM 수지의 기계적 특성은 가교와 부식환경의 차단력이 증가함에 따라 강도가 증가하였다. 결론적으로 중방식의 가교된 미세조직은 방청코팅이 어려운 스테인레스 스틸 같은 금속물질 코팅에도 좋은 실험 결과를 보여주었다.
        4,000원
        57.
        2020.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        FDM 3D printing structures have rough surfaces and require post-treatment to improve the properties. Fumigation is a representative technique for removing surface unevenness. Surface treatment by fumigation proceeds by dissolving the surface of the protruding structure using a vaporized solvent. In this study, 3D printed PVB outputs are surface-treated with ethyl-alcohol fumigation. As the fumigation time increases, the surface flattens as ethanol dissolves the mountains on the surface of PVB and the surface valleys are filled with dissolved PVB. Through the fumigation process, the mechanical strength tends to decrease, and deformation rate increases. Ethanol vapor permeates into PVB, widening the distance between chains and resulting in weak bonding strength between chains. In order to confirm the effect of fumigation only, an annealing process is performed at 80 oC for 1, 5, 10, 30, and 50 minutes and the results of the fumigation are compared.
        4,000원
        58.
        2020.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Porous Fe-Cu-C alloy was sintered by Pulsed Current Activated Sintering(PCAS) method within 10 min from horizontal ball mill mixture. The relative density of Fe-20wt.%Cu-0.8wt.%C alloy fabricated by PCAS method was 91%. The average hardness of the Fe-20wt.%Cu-0.8wt.%C alloy was HRB 92. The phase analysis, microstructure and composition information of the sintered alloy were investigated by using XRD, FESEM, EDAX.
        4,000원
        59.
        2020.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A commercial AA1070 alloy for electrical wire is severely deformed by drawing process in which a rod with an initial diameter of 9mm into is reduced to a wire of 2mm diameter. The drawn AA1070 wire is then annealed at various temperatures from 200 to 450 oC for 2h. Changes in microstructure, mechanical properties and electrical properties of the specimens with annealing temperature are investigated in detail. The specimen begins partially to recrystallize at 250 oC; above 300 oC it is covered with equiaxed recrystallized grains over all regions. Fiber textures of {110}<111> and {112}<111> components are mainly developed, and {110}<001> texture is partially developed as well. The tensile strength tends to decrease with annealing temperature due to the occurrence of recovery or/and recrystallization. On the other hand, the elongation of the annealed wire increases with the annealing temperature, and reaches a maximum value of 33.3 % at 300 oC. Electric conductivity of the specimens increases with annealing temperature, and reaches a maximum value of 62.6%IACS after annealing at 450 oC. These results are discussed in comparison with those for the other aluminum alloy.
        4,000원
        60.
        2020.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The annealing characteristics of cold-rolled Al-6.5Mg-1.5Zn-0.5Fe-0.5Mn alloy, newly designed as an automobile material, are investigated in detail, and compared with those of other aluminum alloys. Using multi-pass rolling at room temperature, the ingot aluminum alloy is cut to a thickness of 4 mm, width of 30 mm, and length of 100 mm to reduce the thickness to 1 mm (r = 75 %). Annealing after rolling is performed at various temperatures ranging from 200 to 500 oC for 1 hour. The specimens annealed at temperatures up to 300 oC show a deformation structure; however, from 350 oC they have a recrystallization structure consisting of almost equiaxed grains. The hardness distribution in the thickness direction of the annealed specimens is homogeneous at all annealing temperatures, and their average hardness decreases with increasing annealing temperature. The tensile strength of the as-rolled specimen shows a high value of 496 MPa; however, this value decreases with increasing annealing temperature and becomes 338MPa after annealing at 400 oC. These mechanical properties of the specimens are compared with those of other aluminum alloys, including commercial 5xxx system alloys.
        4,000원
        1 2 3 4 5