검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 128

        45.
        2018.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, various building integrated wind power (BIWP) approaches have been used to produce energy by installing wind power generators in high-rise buildings constructed in urban areas. BIWP has advantages in that it does not require support to position the turbine up to the installation height, and the energy produced by the wind turbine can be applied directly to the building. The accurate evaluation of wind speed is important in urban wind power generation. In this study, a wind tunnel test and computational fluid dynamics (CFD) analysis were conducted to evaluate the wind speed for installing wind turbines between buildings. The analysis results showed that the longer the length of the buildings, which had the same height, the larger the wind speed between the two buildings. Furthermore, the narrower the building’s width, the higher the wind velocity; these outcomes are due to the increase in the Venturi effect. In addition, the correlation coefficient between the results of the wind tunnel test and the CFD analysis was higher than 0.8, which is a very high value.
        4,000원
        46.
        2018.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        세계풍력발전협회(GWEC) 2017년도 Global Wind Report에 따르면 전세계 풍력에 의한 발전용량은 2001년도 23,900MW에서 2016년도 486,790MW로 비약적으로 발전하고 있다. 반면 국내 발전원별 총발전량 비중에서 풍력에 의한 발전은 0.2% 불과하다. 국내외 발전원별 정산단가가 풍력으로 전기를 생산하는 데 드는 발전원가가 석유 등 화석연료 발전원가와 같아지는 Grid Parity에 이미 도달하여 풍력발전에 의한 전기의 생산은 더욱 확대될 것이다. 본 연구에서는 전 세계 해상풍력설비의 88%가 위치하고 있는 유럽의 주요 해상풍력발전단지의 선박통항 규정과 어로활동에 대한 기준을 분석하여 향후 국내 해상풍력발전단지 설치 시 선박통항 및 어로활동 기준 설정 시 고려되어야 할 사항을 제시하였다.
        4,000원
        47.
        2017.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper relates to the study of load characteristics applicable to wind turbine generators induced by earthquakes. An artificial design earthquake wave generated through the target spectrum and the envelope function of Richter Magnitude Scale (ML) 7.0 as in ASCE4-98 was created. A simulation of earthquake loads were performed according to the design load cases (DLC) 9.5~9.7 of GL guidelines. Additionally, simulation of seismic loads experienced by Wind Turbines installed in the Gyeongju region were carried out utilizing artificial earthquakes of ML 5.8 simulating the real earthquakes during the Gyeongju Earthquakes of Sept. 2016.
        4,000원
        50.
        2017.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The object of research is based on 1.5 MW wind turbine blade. This paper has carried out the aerodynamic shape optimization design of wind turbine blade. Based on the aerodynamic basic theory of wind turbine blade design and combined with particle swarm optimization algorithm(PSO), the design optimization model of the aerodynamic shape of blade is established. Through this study, the optimization results of the angle inducing ′ and tangential inducing  were obtained. The calculation programs are written and calculated chord length and torsion angle of the blade used by ′ and . The calculation result for the optimized wind turbine was 1.38 MW when the wind speed was 16 m/s. The 8 % error could be considered as an engineering acceptable error and the calculated values can be proved the correctness of the design value.
        4,000원
        51.
        2017.04 구독 인증기관 무료, 개인회원 유료
        All structures can not be perfect due to geometric or material initial imperfections. Initial imperfections are an important factor in determining the buckling mode and are known to be important factors in evaluating the actual buckling strength. The DNV-RP-C202 design standard limits the longitudinal stiffener spacing. However, the criteria for the stiffener spacing presented in DNV-RP-C202 is a guideline derived from the curved panel theory of perfect cross-sectional shape without initial imperfections. In this study, considering geometric initial imperfections, the transition point of stiffener spacing where longitudinal stiffeners affect the buckling strength of reinforced steel wind turbine tower is analyzed using finite element analysis program. The results of finite element analysis compared with theoretical results based on the perfect shape. As a result, a more reasonable stiffener spacing considering the initial imperfections was suggested.
        3,000원
        52.
        2017.04 구독 인증기관 무료, 개인회원 유료
        Recently, for efficiency increase of the wind turbine tower, turbine has been enlarged and installation location has been transferring to offshore. The importance of the support structure is emphasized when a wind turbine tower is installed on offshore. The support structure is influenced not only by the system operating loads but also by various marine condition loads. Accurate and safe design is essential because the connection between the support structure and the wind tower can be relatively fragile. In particular, the type of foundation pile and sleeve grout connection were adapted from DNV, API, and ISO that are typically used for wind towers, and they have been continuously studied by many researchers. However, the experimental results by researchers are different from the design equations, and it needs to modify the formula according to connection properties and material. Therefore, this study investigates the design equation presented in existing design criteria and the results of research conducted by existing researchers, and analyzes ultimate strength and failure modes.
        3,000원
        53.
        2017.04 구독 인증기관·개인회원 무료
        This study investigates dynamic characteristics of a 2MW wind turbine structure by long-term response monitoring with accelerometers, tiltmeter and strain gauges. The object wind turbine structure is located in Jeju Island, Korea. The natural frequency and damping ratio were evaluated by least-square frequency domain decomposition and random decrement technique using acceleration response data. As a result, it was found that natural frequencies with 1st, 2nd and 3rd modes, and blade passing frequencies with 1P, 2P and 3P were clearly showed from power spectral densities of acceleration reponses. Furthermore, 1st model frequencies were almost constant with increase in standard deviations of acceleration responses. Another notable observation was that when standard deviations of acceleration responses were small, damping ratios showed to diverge. However, when standard deviations of acceleration responses had large values, damping ratios were converged to about 0.5%.
        54.
        2017.04 구독 인증기관·개인회원 무료
        Cylindrical steel shell sections have been applied in various engineering fields particularly in recent installations of wind turbine towers. Hence, many researchers are interested in studying cylindrical steel shell structures. However, studies on the effect of the presence or absence of openings are insufficient. Thus, the design criteria for the opening as well as the behavior of wind turbine tower are not clearly presented. Therefore, this study examines the ultimate strength and the behavior of wind tower in consideration of openings, presence of stiffeners, changes in opening width, and thickness variation of stiffeners. ABAQUS, a universal finite element analysis program, was used in to conduct this research. Finally, the results of this study can be a reference for the design and production of wind towers with openings.
        55.
        2017.04 구독 인증기관 무료, 개인회원 유료
        The object of research in Based on 1.5MW wind turbine blade. This paper has carried out the aerodynamic shape optimization design of wind turbine blade. Based on the aerodynamic basic theory of wind turbine blade design and combined with particle swarm optimization algorithm, the design optimization model of the aerodynamic shape of blade is established. The calculation programs are written by use of MATLAB and calculate chord length and torsion angle of the blade. Then the shape of wind turbine blade is obtained. As research we can know that the chord length is decreased after optimization design of wind turbine blade, The optimized blade not only meets the actual manufacturing requirement, but also has the largest wind energy utilization coefficient.
        4,000원
        56.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper is concerned with the numerical analysis of dynamic response of floating offshore wind turbine subject to underwater explosion using an effective non-reflecting technique. An infinite sea water domain was truncated into a finite domain, and the non-reflecting technique called the perfectly matched layer(PML) was applied to the boundary of truncated finite domain to absorb the inherent reflection of out-going impact wave at the boundary. The generalized transport equations that govern the inviscid compressible water flow was split into three PML equations by introducing the direction-wise absorption coefficients and state variables. The fluid-structure interaction problem that is composed of the wind turbine and the sea water flow was solved by the iterative coupled Eulerian FVM and Largangian FEM. And, the explosion-induced hydrodynamic pressure was calculated by JWL(Jones-Wilkins-Lee) equation of state. Through the numerical experiment, the hydrodynamic pressure and the structural dynamic response were investigated. It has been confirmed that the case using PML technique provides more reliable numerical results than the case without using PML technique.
        4,000원
        57.
        2016.10 구독 인증기관 무료, 개인회원 유료
        This study is implemented the impact analysis of leveling system used to maintain the level of jacket structure in construction of jacket structure for wind turbine which widely used in offshore wind power. The major problem during the construction of offshore wind power is that a tower or bottom structure which are supporting structures of the generator are passing above the jacket, and it is necessary to maintain its leveling by accurately measuring the level of the jacket while constructing. Due to its purpose, the level of jacket is adjusted with the leveling system which operates hydraulically, but the leveling system inevitably exposed to the impact load during the pile drive. This study interpreted the influences of impact during the design or construction of the leveling system by considering the interaction between the ground and the jacket structures.
        4,000원
        58.
        2016.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 2.5MW급 풍력발전기용 기어박스의 동특성 분석에 관한 것으로서, 유연핀(flexible pin) 채용에 따른 유성기어축의 미스얼라인먼트(misalignment) 개선여부와 충격하중에 따른 기어박스의 동응답 특성을 유한요소해석을 통해 고찰하였다. 내부의 복잡한 기어시스템의 하중전달을 정확하게 그리고 효과적으로 반영하기 위해 치접촉을 등가 치강성계수를 갖는 스프링요소와 물림률을 이용하여 모델링하였다. 기어의 등가 치강성계수는 기어치에 대한 변형해석을 통해 계산하였으며, 동특성 분석을 위해 기어박스 입력단에 충격 토오크를 부과하였다. 수치실험을 통해 등가 치강성모델의 타당성을 검증하였으며, 양단 그리고 일단 고정축과의 상대 비교를 통해 유연핀 적용에 따른 유성기어축의 미스얼라인먼트 개선여부를 확인할 수 있었다.
        4,000원
        60.
        2015.04 구독 인증기관 무료, 개인회원 유료
        Recently, wind power has received attention as one of remarkable renewable energy resources, and worldwide researches about wind power are actively being proceeded. Wind turbine tower has a major role for safety in the wind turbine systems. It is necessary for design tower structure to consider various environmental conditions. Earthquake, as one of the such environmental loads, is ground motion that applied to bottom of the tower structure and has a possibility of critical effect to the wind tower structure. There are various ways for seismic analysis, but design specifications that are in use do not suggest detailed method for seismic analysis. In this study, seismic responses are analyzed through different ways and the adequacy of seismic design methods is examined.
        3,000원
        1 2 3 4 5