검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 57

        41.
        2009.02 KCI 등재 서비스 종료(열람 제한)
        A laboratory experiment was conducted to investigate nitrogen removal from plating wastewater by a soil reactor. A combination of soil, waste oyster shell and activated sludge were used as a loading media in a soil reactor. The addition of 20% waste oyster shell and activated sludge to the soil accelerated nitrification (88.6% NH4+-N removal efficiency) and denitrification (84.3% NO3--N removal) in the soil reactor, respectively. In continuous removal, the influent NH4+-N was mostly converted to nitrate nitrogen in the nitrification soil reactor and only a small amount of NH4+-N was found in the effluent. When methanol was added as a carbon source to the denitrification soil reactor, the average removal efficiency of NO3--N significantly increased. The NO3--N removal by methanol addition in the denitrification soil reactor was mainly due to denitrification. The phosphorus was removed by the waste oyster shell media in the nitrification soil reactor. Moreover, the phosphorus removal in the denitrification soil reactor was achieved by synthesis of bacteria and the denitrification under anaerobic conditions. The approximate number of nitrifiers and denitrifiers was 3.3×105 MPN/g soil at a depth of 1~10 cm and 3.3×106 MPN/g soil at a depth of 10~20 cm, respectively, in the soil reactor mixed with a waste oyster shell media and activated sludge.
        42.
        2008.10 KCI 등재 서비스 종료(열람 제한)
        Nitrogen (N) impact directly to growth and yield of plants. N loss has occurred every where in the world, it is not only serious problem in agriculture but also in environment. N loss can be caused by erosion, runoff, leaching or by many other factors. This experiment was conducted in green house as modeling with pots. The pot is 50 cm of height, 30 cm of diameter and with a tap at near the bottom for drainage. All pots were fill up of soil as natural horizontal. We use 3 types of soil as paddy soil, upland soil and sandy upland soil. The plant materials were used such as: hot Pepper, Soybean and Rye. We conducted 3 treatments of fertilizer in this experiment with N: 5; 10; 20kg/10a. Every treatment was recycling with 3 times of all drained water. The uptakes of plant nutrients at the first cycle were low and with small amount, almost nutrient were kept in soil and leaching by drained water. Every recycled nutrients was reduced in content of drained water but plant increasing absorbability, it means nutrient use efficiency has been improved. In this experiment the total N reduction after the first cycle was 50% and decreased to 10% after the third recycle. Nutrient loss by leaching depends on the soil type and recycling time. In this experiment, leaching capacity of sandy upland soil was higher than paddy soil and lowest was upland soil. The nutrient contents of drained water of sandy upland soil were more than 25mg at the 3rd recycle, it is still high compare with paddy soil and upland soil. If only use fertilizer for 1st cycle almost fertilizer would be leached to underground water or by the path way as a cause of environmental pollution and furthermore we could save application amount of N fertilizer.
        43.
        2007.06 KCI 등재 서비스 종료(열람 제한)
        A laboratory experiment was performed to investigate nitrogen removal by the soil column. The addition of 20% waste oyster shell to the soil accelerated nitrification in soil column. The NO3--N concentration in the effluent decreased with the decrease of HRT(Hydraulic Retention Time). When methanol and glucose added as carbon sources, the average removal rates of T-N(Total Nitrogen) were 82% and 77.9%, respectively. The NO3--N removal by methanol supplementation in soil column can likely be attributed to denitrification. In continuous removal of nitrogen using the soil column, the COD(Chemical Oxygen Demand) and NH4+-N removed simultaneously in organic matter decomposing column. The greater part of NH4+-N was nitrified by the percolated through nitrification column, and the little NH4+-N was found in the effluent. The T-N of 87.4% removed at HRT of 36 hrs in denitrfication column. Because of nitrified effluents from nitrification column are low in carbonaceous matter, an external source of carbon is required.
        44.
        2007.01 KCI 등재 서비스 종료(열람 제한)
        This study was carried out to investigate the variation of organic, nitrogen and phosphorus in (AO)2 SBBR process according to the variation of operating cycle at the high TOC concentration. The operation time in anoxic (anaerobic) time to oxic time was 1:1. Three lab-scale SBBRs were fed with synthetic wastewater based on glucose as carbon source. The variation of total TOC removal was similar each other irrespective of operation time, however, the TOC concentrations in SBBRs showed a little difference according to the operating condition. In SBBR, complete nitrification was not occurred at all reactors, however, R3 showed a higher nitrification than R2. And in SBBR, the variation of operating time more affected at phosphorus removal than nitrogen removal. R2 which had the shortest time at the 1st aeration time showed the lowest phosphorus release and uptake efficacy.
        45.
        2006.06 KCI 등재 서비스 종료(열람 제한)
        This study make a comparison between the phosphorus removal performance of FNR(Ferrous Nutrient Removal) process and A/O process by the laboratory experiments. For simultaneous removal of phosphorus, iron electrolysis was combined with oxic tank. Iron precipitation reactor on the electrochemical behaviors of phosphorus in the iron bed. The phosphorus removal in FNR process was more than A/O process. Iron salts produced by iron electrolysis might help to remove COD and nitrogen. And the demanded longer SRT is the more removes the removes COD, nitrogen, and phosphorus. Also, FNR process of sludge quantity more reduce than A/O process to input cohesive agents.
        46.
        2006.05 KCI 등재 서비스 종료(열람 제한)
        The effluent discharge standards of industrial wastewater has become more stringent since 2003. Many industrial wastewater treatment plants has been upgraded to advanced treatment facilities. There are high concentrations of nitrate(>200 mg/L) and ammonium(>50 mg/L) nitrogen in the acrylic fiber wastewater of H textile Co. Wastewater from acrylic fiber industry containing acrylonitrile, which may affect the subsequent biological treatment process. Manufacturing of acrylic fiber also produces shock loadings. Excessive acrylonitrile and polymer debris produced in the polymerization process was screened, coagulated with CaO and settled down. A preaeration system was added to treat this high pH effluent to remove volatile organic compound and ammonia nitrogen by the air stripping effect. It was found that nitrification rate was not sufficient in the Anoxic/ Oxic(AO) process. One denitrification tank was converted to nitrification reactor to extend HRT of nitrification. Nitrification rate of ammonia nitrogen was promoted from 32% to 67% by this modification and effluent nitrogen concentration was well satisfied with the effluent standards since then.
        47.
        2005.12 KCI 등재 서비스 종료(열람 제한)
        Anoxic-oxic process were analyzed numerically for the each unit and final TN effluent by Water Quality Management(WQM) model and the results were compared data from these sewage or wastewater treatment plants. No bugs and logic error were occurred during simulation work. All of the simulation results tried to two times were obtained and both results were almost same thus this model has good reappearance. A few of simulation results were deviated with measured data because lack of influent water qualities are reported however simulation results have wholly good relationship with measured data. Also each unit of simulation result was kept good relationship with that of measured data therefore this WQM model has good reliance. Finally, WQM model predicts final TN effluent within ±4.1 ㎎/ℓ.
        48.
        2005.09 KCI 등재 서비스 종료(열람 제한)
        This study was carried out to get more operational characteristics of Anoxic(anaerobic)-Oxic-Anoxic-Oxic (AO)2 sequencing batch biofilm reactors (SBBRs) at the low TOC concentration. The operating time in anoxic (anaerobic) time to oxic time was 1:1. Experiments were conducted to find the effects of the aeration time distribution on the organic matters and nutrients removal. Three lab-scale reactors were fed with synthetic wastewater based on glucose as carbon source. During studies, the operation mode was fixed. The first aeration time to the second aeration time in SBBR-1 was 2:3, and those in SBBR-2 and SBBR-3 were 1:4 and 3:2, respectively. The organic removal efficiency didn't show large difference among three reactors of different aeration time distribution. However, from these study results, the optimum aeration time distribution in the first and the second aeration time for biological nutrient removal was shown as 3:2. The release of phosphorus was inhibited at the second non-aeration period because of the low TOC concentration and the nitrate produced by the nitrification at the first aeration period.
        49.
        2005.08 KCI 등재 서비스 종료(열람 제한)
        The purpose of this research was to investigate applicative possibility of field. Pilot-scale experiments were conducted, at outdoor temperature, HRT 10hour, IR(Internal Recycle) 150% and used 2.8㎥ Reactor. External carbon source was varied 80 to 120 mg/L. When External carbon source and Alkalinity were injected to the B3 pilot plant, the removal efficiencies of COD and BOD were not decreased. Nitrification rate were 5.95, 5.40, 4.08 mgNH4+-N/gSS/d during operation periods and denitrification rate was 3.12mgNO3--N/gSS/d. When we surveyed the relationship between loading rate of nitrogen and nitrogen removal quantity, this data was 0.949, B3 process will be possible application process of field.
        50.
        2005.07 KCI 등재 서비스 종료(열람 제한)
        A laboratory experiment was performed to investigate phosphorus and nitrogen removal from synthetic wastewater by intermittently aerated activated sludge process packed with aluminum and silver plate. Three continuous experimental processes, i. e. an intermittently aerated activated sludge process(Run A), an intermittently aerated activated sludge process with an aluminum and silver plate packed into the reactor(Run B), and a reactor post stage(Run C) were compared. In the batch experiments, the phosphorus removal time in the reactor packed with aluminum and silver plate simultaneously was faster than that of the reactor packed with only an aluminum plate. More phosphorus was removed with an increase of NaCl concentration. The pitting corrosion of aluminum does not affect the performance of the biological treatment. The total nitrogen removal efficiency in Run B was 57% and 43.6% at the HRT of 12 and 6 hours respectively. The effluent PO4-P concentration as low as 1.0 mg/L could be obtainable through the continuous experiment in Run B at HRT of 6 hours.
        51.
        2005.02 KCI 등재 서비스 종료(열람 제한)
        This study was conducted to determine optimum design parameters in nitrification and denitrfication of chemical fertilizer wastewater using pilot plant, Jet Loop Reactor. The chemical fertilizer wastewater which contains low amounts of organic carbon and has a high nitrogen concentration requires a post-denitrfication system. Organic nitrogen is hydrolyzed above 86%, and the concentration of organic nitrogen was influent wastewater 126㎎/L and of effluent wastewater 16.4㎎/L, respectively. The nitrification above 90% was acquired to TKN volumetric loading below 0.5 ㎏TKN/㎥‧d, TKN sludge loading below 0.1 ㎏TKN/㎏VSS‧d and SRT over 8days. The nitrification efficiency was 90% or more and the maximum specific nitrification rate was 184.8 ㎎TKN/L‧hr. The denitrification rate was above 95% and the concentration of NO3-N was below 20㎎/L. This case was required to 3 ㎏CH3OH/㎏NO3-N, and the effluent concentration of NO3--N was below 20㎎/L at NO3--N volumetric loading below 0.7 ㎏NO3--N/㎥‧d and NO3--N sludge loading below 0.12 ㎏NO3--N/㎏VSS‧d. At this case, the maximum sludge production was 0.83 ㎏TS/㎏T-Nre and the specific denitrfication rate was 5.5 ㎎NO3-N/ gVSS‧h.
        52.
        2003.03 KCI 등재 서비스 종료(열람 제한)
        This study was conducted to evaluate the feasibility of ammonia removal by zeolite adsorption in drinking water treatment. In generally, drinking water treatment process is conducted coagulation/flocculation, sedimentation, sand filtration and disinfection. We tested feasibility with two method, one is powdered zeolite dosing to coagulation tank and the other is to substitute granular zeolite for sand of sand filter. In powdered zeolite test, raw water is used tap water with putting of 2mg/l of NH4+-N. Filtration of granular zeolite was conducted with 80cm of effective column high and 120m/d of flow rate. At above 100mg/l of zeolite dosage, ammonia concentration was decreased below 0.5mg/l of NH4+-N in powdered zeolite test. But, turbidity was increased to 30NTU by powdered zeolite dosage. That turbidity was scarcely decreased in generally coagulant using condition in drinking water treatment. In granular zeolite test, ammonia was not detected in treated water until 8 days. This result suggest that using of granular zeolite in sand filter could be removal ammonia in winter. But we need regeneration at zeolite filtration for ammonia removal. So, it is to make clear that zeolite regeneration ability was compared KCl with NaCl. The result reveal that KCl was more excellent than NaCl. Optimum regeneration concentration of KCl was revealed 100 mM. Regeneration efficient was not increased at pH range 10~12.5
        53.
        2003.01 KCI 등재 서비스 종료(열람 제한)
        This study was carried out to obtain the operating characteristics of SMMIAR process for biological nitrogen·phosphorus removal. SMMIAR was operated at HLR(Hydraulic loading rate) of 39.6, 52.8, 63.4 and 79.2ℓ/㎡/d respectively and the operating parameters such as intermittent aeration time ratio of aerobic/anoxic, DO and microorganism concentration were changed to confirm the optimum operating condition. The concentrations of the wastewater BOD, TN(Total nitrogen) and TP(Total phosphorus) were 150, 30 and 7.5㎎/ℓ respectively. Achieving better removal efficiencies of BOD, TN and TP up to 90, 85.4 and 95.4% respectively, we must keep in operation condition of SMMIAR by 0.75 of time ratio of aerobic/anoxic and by minimum 45 minutes of oxic period simultaneously.
        54.
        2002.12 KCI 등재 서비스 종료(열람 제한)
        This study was focused on the investigation of the characteristics of organics and nitrogen removal with the recycle ratio in anoxic/oxic(A/O) packed bed process that consisted of the anoxic reactor and the aerobic reactor. As increasing the recycle ratio by 0.5, 1.0, 2.0, the COD removal efficiency increased by 94.0%, 98.5%, 98.8% respectively. The aerobic reactor showed the perfect nitrification efficiency by 98.5%, 99.2%, 98.0% respectively. The T-N removal efficiency with the recycle ratio, increased by 56%, 67%, 70% respectively. As increasing the recycle ratio by 0.5, 1.0, 2.0, T-P removal efficiency decreased by 62.1%, 57.4%, 51.3% respectively. The process by releasing the stored phosphorus in the anoxic reactor and uptaking the excess phosphorus in the aerobic reactor, occurred well comparatively when recycle ratio is 0.5. But this process did not occur when the recycle ratio is 1.0 and 2.0. And optimum pH of nitrification was about 6~7 and alkalinity decreased as nitrification rate increased. As increasing the recycle ratio in the anoxic reactor, DO concentration and ORP increased.
        55.
        2002.03 KCI 등재 서비스 종료(열람 제한)
        This study was conducted to know the removal characteristics of ammonia nitrogen by commercially available cation exchange resins. Eight acidic cation exchange resins were investigated in batch reactors. Among them, the most effective resin for ammonia removal in solution was PK228, which was a strong acidic resin of Na+ type. PK228 was compared with activated carbon and natural zeolite. The effects of cation exchange capacity, ammonia concentration, resin amount, temperature and pH on ammonia removal by PK228 were investigated in batch reactor, and the effect of effluent velocity in continuous column reactor. Strong acidic resins of porous type were more effective than week acidic resins or gel type resins for ammonia removal in solution. PK228 was more effective than activated carbon and natural zeolite for ammonia removal in batch reactor. With increasing initial ammonia concentration, the amount of ammonia removed by PK228 increased, but the proportion of removed ammonia to initial ammonia concentration decreased. The effect or temperature on ammonia removal by PK228 was very slight. The ammonia removal to acidic solution was more effective than that at basic solution. With decreasing effluent velocity of solution through column, breakthrough point extended, and ammonia removal capacity increased.
        56.
        2001.06 KCI 등재 서비스 종료(열람 제한)
        Immobilized nitrifier bead in airlift bioreactor were used to remove high levels of ammonia nitrogen from synthetic wastewater. Polyvinylalcohol (PVA) bead for immmobilization of nitrifier consortium were prepared by PVA-boric acid method by varying concentration of PVA and nitrifier consortium. By determining viscosity, sphercity and tailing, the characteristics of prepared beads were investigated and the continous immobilization process was developed. Synthetic wastewater containg 25g/㎥ of ammonia nitrogen could be treated within 0.5 hour and the highest removal rate of ammonia nitrogen was 934.2g/㎥ ·day.
        57.
        1997.12 KCI 등재 서비스 종료(열람 제한)
        Sequencing Batch Reactor(SBR) experiments for organics and nutrients removal have been conducted to find an optimum anaerobic/anoxic/aerobic cycling time and evaluate the applicability of oxidation-reduction potential(ORP) as a process control parameter. In this study, a 6 ℓ bench-scale plant was used and fed with night-soil wastewater in K city which contained TCODcr : 10,680 ㎎/ℓ, TKN : 6,893 ㎎/ℓ, NH_4^+ -N : 1,609 ㎎/ℓ, PO_4^3- -P : 602 ㎎/ℓ on average. The cycling time in SBRs was adjusted at 12 hours and 24 hours, and then certainly included anaerobic, aerobic and anoxic conditions. Also, for each cycling time, we performed 3 series of experiment simultaneously which was set up 10 days, 20 days and 30 days as SRT. From the experimental results, the optimum cycling time for biological nutrient removal with night-soil wastewater was respctively 3hrs, 5hrs, 3hrs(anaerobic-aerobic-anoxic). Nitrogen removal efficiency was 77.9%, 77.9%, 81.7% for each SRT, respectively. When external carbon source was fed in the anoxic phase, ORP-bending point indicating nitrate break point appeared clearly and nitrogen removal efficiency increased as 96.5%, 97.1%, 98.9%. Phosphate removal efficiency was 59.8%, 64.5%, 68.6% for each SRT. Also, we finded the applicability of ORP as a process control parameter in SBRs.
        1 2 3