검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 234

        101.
        2017.01 KCI 등재 서비스 종료(열람 제한)
        The purpose of this study was to evaluate flowability of engineered cemetitious composite(ECC) Using blast furnace slag and fly ash as a binder in mixture. From the test result, flowability value of all ECC mixtures show good flowability and self compacting performance.
        102.
        2017.01 KCI 등재 서비스 종료(열람 제한)
        In general, polymer cement mortars that is made from organic polymer dispersion and cement have good workability compared with ordinary cement due to ball-bearing acting of polymer particles in cement mortar. The purpose of this study is to evaluate the workability of cement mortar according to adding of admixtures such as polymer dispersions, blast-furnace slag and fly ash. From the test results, the flow of polymer-modified mortars is increased with increasing polymer-cement ratio, and also is a little improved according to adding of fly ash compared to blast-furnace slag.
        103.
        2017.01 KCI 등재 서비스 종료(열람 제한)
        From the test results, it was found that the compressive strength and the resistance of chloride ion penetration were evaluated the slag content of the concrete for bridge pavement. Compressive strength test results showed that initial strength was decreased as slag replacement ratio increased. The chlorine ion penetration performance increased with increasing strength.
        104.
        2017.01 KCI 등재 서비스 종료(열람 제한)
        In this study, it was developed geopolymer concrete of alkali-activated using the mixed fly ash and blast furnace slag. and it was developed the interlocking block using the developed geopolymer concrete. In addition, the bending strength and water absorption rate of the interlocking block was tested by KS standard. The test results were as follows. The water adsorption ratio of the BSF4 specimen was under 10%, and the flexural strength of that was over 5MPa.
        105.
        2017.01 KCI 등재 서비스 종료(열람 제한)
        Recycling standards and methods of steel slag are prescribed in the “Waste Control Act” and the “Act on the Promotion of Saving and Recycling of Resources”. However, the recycling purposes and methods for non-ferrous slag are permitted for lead, zinc, and aluminum slag, etc., and only small amounts are recycled. Most non-ferrous slags are treated by consigned treatment or landfill. In addition, some non-ferrous slag can cause environmental pollution when directly recycled in soils or result in high costs for disposal or storage due to high heavy metal concentrations. In this study, we investigated the characteristics of slag generated during non-ferrous metal processing or recycling, providing recycling purposes and methods including those for useful metal recovery based on the characteristics of slags, cement and cement additives, and alternatives to natural aggregates. Content analysis of non-ferrous slag showed the concentration of metals such as Al and Cu ranging from 1 to 27%, indicating the necessity to recover the secondary metals by properly grinding slags and using economical concentration technologies. Based on the leaching test result of non-ferrous slag, rainfall blocking facilities need to be installed to prevent rainfall from flowing into storage sites for slags so that alternative materials can be safely managed.
        106.
        2016.10 서비스 종료(열람 제한)
        By analyzing the flexural capacity of shotcrete mixture with blast furnace slag and confirmed the suitability as subsea tunnel support of the long-term repeated soaked in chloride-ion slag shotcrete. As a result, the shotcrete mixture with slag is excellent evaluated in terms of flexural capacity compared with existing shotcrete.
        107.
        2016.10 서비스 종료(열람 제한)
        The purpose of the present study is to investigate some effects of concrete according to addition of blast furnace slag and sulfuric alkali-activator. Blast furnace slag was used at 30~80% replacement by weight of cement, and liquid sulfur having NaOH additives was chosen as the alkaline activator. In order to evaluate characteristics of blast furnace slag concrete with sulfuric alkali activators, compressive strength test, carbonation test were performed.
        109.
        2016.10 서비스 종료(열람 제한)
        In this study, we tried to review the potential of commercialization of the developed product of aerated concrete and floor mortar used in the construction of residential buildings such as apartment buildings. As a result, it was analyzed that the difference was negligent in terms of the depth of subsidence, though the developed product was good enough in terms of compressive strength and economic efficiency.
        110.
        2016.09 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 경량기포 콘크리트를 이용한 육성용 토양골재의 적용성을 평가하기 위해서 고로슬래그 기반 기포콘크리트의 총 8 배합과 인공토양골재를 제조하였다. 고로슬래그 기반 기포콘크리트 배합의 주요변수는 단위결합재량으로서 100에서 800 kg/m3으로 변화하 였다. 경량기포콘크리트는 플로우, 슬러리 및 절건 밀도와 재령별 압축강도를 측정하였으며, 파쇄된 인공토양골재는 pH, 입도분포, 투수계수, 양이온치환용량(CEC), 유기물함유량(C/N비)을 측정하였다. 측정결과 경량기포콘크리트의 플로우, 슬러리 및 절건밀도와 재령별 압축강도는 단위결합재량이 증가함에 따라 증가하였다. 경량기포콘크리트의 단위결합재량이 500 kg/m3 이상인 배합의 28일 압축강도는 4 MPa 이상이었 다. 인공토양골재에 3일 이상의 15% 희석된 제1인산암모늄의 수용액침지는 pH를 저감시키는데 효과적이었다. 또한 제조된 인공토양골재는 양이온 치환용량(CEC) 측면에서 상급으로 평가되었지만 C/N비 측면에서는 조경시방서를 만족시키지 못하였다.
        111.
        2016.04 서비스 종료(열람 제한)
        Converter slag contains free-CaO and free-MgO that has a problem causing a breakdown in the water and reaction. To solve this problem, it was treated the aging process that is inserting a converter slag aggregate in water before placing concrete. As a result, aging process was very effective in the compressive strength of the concrete.
        113.
        2016.04 서비스 종료(열람 제한)
        Even though high performance concrete was developed according to becoming bigger and higher of reinforced concrete building, the rheological evaluation is not enough to use as input data to accomplish the numerical analysis of construction design. Consistency curves were measured by the viscometer as hydration reaction time passed. There are a sudden change of viscosity and yield stress around initial setting in case of low W/B. The increase of workability by the change of free water in cement paste was offset by the coating effect of impermeable layer in case of W/B 40%.
        114.
        2016.04 서비스 종료(열람 제한)
        This study examines the strength properties use of talc as a substitute for OPC-GGBFS cement. The test was carried out by replacing the plain mix(OPC : GGBFS = 50 : 50) with talc at the rate of 0~100%. The OPC contents was constant in all mixtures. The mixtures replaced GGBFS with talc. The results showed that the compressive strength and bending strength decreases with an increase in talc contents.
        115.
        2016.04 서비스 종료(열람 제한)
        This study evaluates the material performance of slump value and compressive strength of the concrete which was made by recycled sand and blast furnace slag powder(BFSP). The main variables are replacement ratio of BFSP. As a result, it was evaluated that more detailed evaluation is needed in long-term strength development and the compensation of slump value to the replacement ratio of BFSP.
        116.
        2016.03 KCI 등재 서비스 종료(열람 제한)
        알칼리활성화 슬래그-레드머드 시멘트는 알칼리활성화 시멘트 연구의 일환으로서 시멘트 조성에서 알칼리자극제, 고로슬래그와 레드머드로 구성되어져 있으며, 포틀랜트 시멘트를 사용하지 않는 클링커 프리 시멘트(Clinker Free Cement)를 의미한다. 본 논문에서는 포틀 랜트 시멘트를 전혀 사용하지 않고 고분자 유기화합물인 재유화형 분말 폴리머를 혼입한 알칼리활성화 슬래그 시멘트에 레드머드의 대체율을 달리하여 강도특성, 기공특성 등을 기존 포틀랜트 시멘트와 비교 평가하였다. 그 결과 알칼리활성화 시멘트에 레드머드를 대체할 경우 C-S-H 광물상과 에트린가이트가 주요 수화생성물로 포틀랜트 시멘트와 비교하여 조직이 치밀하고 대체율 10%까지는 압축강도 및 휨강도가 증가하 였다.
        117.
        2015.11 서비스 종료(열람 제한)
        Steel slag has been used as the alternative binder to replace Portland cement that furthermore used as in construction and/or for stabilization/solidification of heavy metals in mine soil. One of the treatments to modify the leaching behavior of the mine soil is by carbonation. The purpose of this study was to assess the potential of carbonation in various steel slags. Based on chemical and mineralogical characterization of four kinds of slag that were used in this study, it showed that all slags had high potential for reacting with CO2 that was in accordance with the high CaO and MgO content. CO2 sequestration by aqueous carbonation of several kinds of stainless steel slags with different liquid to solid ratio was investigated in this study. The effect of chemical properties and reaction time on the performance of the carbonation process was also investigated. Converter slag, blast furnace slag (BFS) and ladle furnace slag (LFS) were used. Carbonation experiment was conducted in a closed reactor under the conditions; 1bar, 400rpm and 25℃, with solid to liquid ratios of 0.4, 0.6 and 1.0. Carbonation kinetic test was relatively fast and completed within 5 hours. The CO2 consumption increased when the liquid to solid ratio increased because of the dilution effect. Our results showed that the higher CaO and MgO contents in the slag, the higher CO2 consumption was observed. Pohang converter slag and Dangjin LFS showed slightly different tendency. At L/S ratio 0.4, Pohang slag with higher CaO and MgO content had higher CO2 consumption than Dangjin LFS. As the water content increased, Dangjin LFS had higher CO2 consumption than Pohang converter slag that was caused by the texture of Dangjin LFS with smaller particle size than Pohang converter slag. However, both Pohang BFS and Dangjin BFS have poor capacity in CO2 sequestration.
        118.
        2015.11 서비스 종료(열람 제한)
        선진국(미국, 일본, 독일 등)들은 산업원료로 활용되는 금속자원의 40%이상을 폐금속 자원 순환을 통해서 확보하고 있으며 국내 비철금속 및 희유금속 회수 재활용은 15% 정도로 우리나라의 재활용률은 매우 저조한 실정이다. 현재 우리나라 폐금속 자원 순환은 대부분 Oil Burner 용해로를 사용하고 있어 에너지 및 자원 회수율이 낮고 환경오염이 심하다. 따라서 폐자원의 적절한 처리시설의 개발이 시급한 문제로 다가오고 있으며 이를 동시에 해결할 수 있는 방안이 개발 되어야 할 것이다. 본 연구는 전기로(SAF)를 이용하여 폐자원으로부터 자원 회수공정을 제시하고 이를 바탕으로 실험실 규모의 설비를 구성하여 검증하고 그 결과를 바탕으로 2톤/일 규모의 설비를 제작하여 자원회수량을 평가하였다. AC Type의 전기로(SAF)를 기초로 하여 변압기, 급전설비(3상), 로 본체, 승하강 Roof, 원료투입설비로 구성하였다. 로내 Slag장입 후 예열, 용융, 출탕 순서로 조업(3시간/공정)하였으며 이상의 공정을 통해 폐자원으로부터 동 90%를 회수하였다.
        119.
        2015.10 서비스 종료(열람 제한)
        Performance Evaluation was conducted for analyzing fundamental properties of warm-mix asphalt mixture using 100% steel slag. This study tested and compared asphalt mixture used three types of asphalt binder and two types of aggregate.
        120.
        2015.10 서비스 종료(열람 제한)
        The study is compressive strength of 110MPa PHC pile using ground granulated blast furnace slag to NAC, AC curing method. In the result, 20% of ground granulated blast furnace slag could be substituted for cement in PHC pile concrete.