검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2,000

        1.
        2025.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Existing reinforced concrete buildings with seismically deficient columns experience reduced structural capacity and lateral resistance due to increased axial loads from green remodeling or vertical extensions aimed at reducing CO2 emissions. Traditional performance assessment methods face limitations due to their complexity. This study aims to develop a machine learning-based model for rapidly assessing seismic performance in reinforced concrete buildings using simplified structural details and seismic data. For this purpose, simple structural details, gravity loads, failure modes, and construction years were utilized as input variables for a specific reinforced concrete moment frame building. These inputs were applied to a computational model, and through nonlinear time history analysis under seismic load data with a 2% probability of exceedance in 50 years, the seismic performance evaluation results based on dynamic responses were used as output data. Using the input-output dataset constructed through this process, performance measurements for classifiers developed using various machine learning methodologies were compared, and the best-fit model (Ensemble) was proposed to predict seismic performance.
        4,200원
        2.
        2025.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        정확한 선박 항적 예측은 선박의 충돌 회피 전략 수립과 자율운항 선박의 안전 운항에 중요한 요소이다. MMG(Maneuvering Modeling Group) 모델이나 CFD(Computational Fluid Dynamics)를 활용하여 선박 항적을 계산할 수 있지만, 계산을 위한 선박의 정확한 계 수등을 확보하는 것은 현실적으로 어렵다. 이에 대한 대안으로, LSTM(Long Short-Term Memory)과 같은 인공지능을 활용한 항적 예측 연 구가 진행되고 있다. 그러나 LSTM 단독으로는 선박의 복잡한 비선형적 움직임을 완벽히 예측하는데 한계가 있다. 예측 정확도를 향상 시키기 위해 본 연구에서는 STL-CNN-LSTM 하이브리드 모델을 제안한다. 이 모델은 STL (Seasonal and Trend decomposition using Loess)을 이용한 데이터를 분해하고, CNN(Convolutional Neural Network)을 활용한 데이터의 특징 추출, 그리고 LSTM을 통한 학습이 이뤄진다. 이 연구는 CNN-LSTM에 비해 얼마나 더 높은 항적 예측도를 보여주는지 비교 분석한다. 분석 결과, STL-CNN-LSTM 모델은 CNN-LSTM보 다 우수한 예측 성능을 보이며, 예측 오차는 1~5미터 범위 내에 있는 것으로 나타났다. 이러한 연구 결과는 정밀한 충돌 회피 전략 개 발에 기여할 수 있으며, 향후 연구에서는 실무 적용을 위한 충돌회피 모델의 설계 고도화 연구에 적용될 것이다.
        4,000원
        3.
        2025.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        해양오염사고가 발생하면 해양경찰청에서는 긴급방제에 관한 전략 수립을 위해 유출유 확산 예측모델을 구동한다. 이러한 유출유 확산예측모델은 바람, 해류, 조류 등 해양기상을 기반으로 해상에서 유출유 이동방향과 소멸시간 등을 예측하며, 그 결과를 기 반으로 해양경찰청에서는 방제전략을 수립하고 필요한 방제자원을 동원한다. 이뿐만 아니라 유출유 확산예측모델은 해양경찰청의 해 양환경에 관한 다양한 법률 분야와 연계된 형사법 작용의 기술적 근거를 제공한다. 우선 행정법적 측면에서 해양경찰청이 방제의무자 에게 이행하도록 하는 권력적 행정행위로서의 방제명령 등에 대한 비례성 원칙에 부합하는지를 확인할 수 있고, 이는 행정의무 미이행 에 대한 형사법 작용의 전제 요건이 될 수 있다. 그리고 국제법적 측면에서 관할해역 이원에서 발생한 오염에 대해 국가의 개입여부를 판단할 수 있는 근거를 제공하고, 이는 형사관할권에 대한 판단에 있어 기술적 자료가 될 수 있다. 더불어 형사법적 측면에서는 예측 모델은 해양오염과 유출원 사이의 인과관계를 증명하는 방법으로 활용할 수도 있다. 그리고 기후위기로 친환경선박이 도입되고, 이에 따라 해양오염사고는 인명과 환경에 함께 피해를 주는 복합사고 형태로 변화할 것이다. 이에 따라서 기술적 측면에서 기존 해상에서의 유출유 예측모델은 대기ㆍ해양ㆍ수중에 대한 통합모델로 전환되어야 한다. 그리고 제도적 측면에서 친환경선박의 위험 연료에 대한 관리의무 규정을 마련하여야 하고, 의무이행을 위한 형사정책적 측면에서는 위험연료 유출로 해양환경 위해가 있는 경우에 형사벌 대 상이 될 수 있다. 여기서 통합모델은 환경ㆍ안전이 관한 보호법익 침해를 증명하는 과학적 증거로 활용할 수 있다.
        4,000원
        4.
        2025.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study evaluated the short- and long-term prediction performances of a transformer-based trajectory-forecasting model for urban intersections. While a previous study focused on developing the basic structure of a transformer model for future trajectory prediction, the present study aimed to determine a practical prediction sequence length. To this end, multiple transformer models were trained with output sequence lengths ranging from 1 s to 10 s, and their performances were compared. The trajectory data used for training were generated through a microscopic traffic simulation, and the model accuracy was assessed using the metrics average displacement error (ADE) and final displacement error (FDE). The results demonstrate that the prediction accuracy decreases significantly when the output trajectory length exceeds 3 s. Specifically, straight-driving trajectories exhibit rapidly increasing errors, while turning trajectories maintained a relatively stable accuracy. In contrast, for turning-driving trajectories, prediction errors increased sharply during short-term forecasting, but the increase was more gradual in long-term forecasts. Additionally, the long-term prediction models produced higher errors even in the initial 1-second outputs, implying a tendency toward conservative inference under uncertain future scenarios. This conservative behavior is likely influenced by the model’s effort to minimize the overall loss across a broader prediction window, especially when trained with Smooth L1 loss function. This study provides practical insights into model design for edge-computing environments and contributes to the development of reliable short-term trajectory prediction systems for urban ITS applications.
        4,000원
        5.
        2025.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        우리나라는 산지가 많고 하절기에 연 강수량의 약 2/3정도가 집중적으로 발생하기 때문에 매년 산사태에 의한 피해가 발생하고 있다. 재산 및 인명을 보호하기 위해서는 사전에 산사태 발생지를 예측하고 피해를 최소화하기 위한 대책이 요구된다. 본 연구는 2020년 경상남도지역 산사태 발생지 157개소를 대상으로 붕괴면적(㎡)에 미치는 영향인자를 구명하고, 수량화이론(I)을 사용하여 붕괴면적에 대한 각 인자의 기여도 분석을 하여 예방적인 측면에서 산사태 발생 위험지역에 대한 예측기법을 개발하였다. 산사태 발생지 붕괴면적에 영향을 미치는 인자의 Range를 추정한 결과, 산사태 위험등급(0.4664)이 가장 높게 나타나 경남지역의 산사태 발생 위험도에 큰 영향을 미치는 것으로 추정되었으며, 다음으로는 영급 (0.3891), 고도(0.2934), 경급(0.2037)순으로 나타났다. 경상남도지역 산사태 발생 위험도 판정표를 기준으로 4개 인자의 category별 점수를 계산한 추정치 범위는 0점에서 1.3526점 사이에 분포하고 있으며, 중앙값은 0.6763점으로 산사태 위험도 예측을 작성한 결과 Ⅰ등급은 1.0146 이상, Ⅱ등급 0.6764∼1.0145, Ⅲ등급 0.3383∼0.6763, IV등급 0.3382 이하로 나타나 1등급, 2등급에서 산사태 발생 비율이 59.2%로서 높은 적중률을 보였다. 따라서 본 판정표는 경상남도지역에 있어서 산사태발생 위험 예측 판정에 유용하게 사용할 수 있을 것으로 사료된다.
        4,000원
        6.
        2025.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        2019년 발생한 코로나 팬데믹은 백신의 지역별 불평등 분배를 야기하며 백신의 수급은 사회・정치적 문제로 확장되어 왔다. 의료 자원에 대한 공급과 수요를 예측하고 조정하는 것은 향후 발생할 수 있는 팬데믹 위기 해결의 실마리가 된다. 본 연구는 백신이라는 한정된 의료 자원의 공간적 형평성을 달성하는 것을 목적으로, 머신러닝을 통해 미래 서울시 인구 및 공간적 백신 접근성을 예측하였다. 공간분석 분야에서 공간접근성을 측정하는 데에 통용적으로 활용되는 2SFCA(Two-Step Floating Catchment Area Method) 방법론으로 백신의 공급처인 병원의 접근성을 파악하였다. 2017년 부터 2023년까지의 백신 접근성 및 백신 취약지를 도출한 뒤, 발생 핫스팟(Emerging Hot Spot) 탐색으로 과거부터 미래까지의 분포 변화를 분석하였다. 대한민국 의료 거점지인 서울시 백신 접근성의 측정 결과, 향후 백신 접근성은 전역적으로 감소할 것으로 보이며 특히 북부지역 비롯한 외곽지역이 접근성 취약지역으로 판단되었다. 본 연구는 서울의 시공간적인 백신 공급을 예측 및 분석하여 향후 발생할 수 있을 팬데믹 상황에 대비한 백신 취약지를 보완할 수 있는 지표를 완성하였다. 연구 결과는 백신 취약지역을 효과적으로 탐색할 수 있을 뿐만 아니라 미래 효과적인 백신 분배 정책에 기초자료로 활용할 수 있을 것이라 기대한다.
        4,600원
        7.
        2025.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 EBR 및 EBROG 기법으로 부착된 CFRP판과 콘크리트 모체 간 부착성능을 평가하였다. 실험 변수로는 콘크리 트 압축강도, 홈의 개수 및 깊이를 고려하였으며, 총 21개의 시편을 대상으로 단일 랩 전단 실험을 수행하였다. 실험 결과, EBROG 기법을 적용한 시편은 EBR 기법을 적용한 시편보다 최대 62% 높은 부착 강도를 보였다. 또한, 홈의 개수와 깊이가 증가할수록 부착강 도도 증가했으나, 홈이 3개일 때 가장 높은 증가율을 기록하였다. 한편, 콘크리트 압축강도가 증가할수록 부착강도도 상승했지만, 압축 강도가 가장 높은 시편에서는 오히려 부착강도 증가율이 가장 낮았다. 아울러, EBROG 기법으로 부착된 CFRP 판의 유효 변형률을 예측하는 모델을 개발하기 위해 실험 데이터를 기반으로 회귀 분석을 수행하였다. 제안된 모델의 예측값과 실험값의 비의 평균과 표준 편차는 각각 1.002 및 0.032로 나타나, 해당 모델이 유효 변형률을 정확하게 예측할 수 있음을 확인하였다.
        4,000원
        8.
        2025.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Given the hazards posed by black ice, it is crucial to investigate the conditions that contribute to its formation. Two ensemble machinelearning algorithms, Random Forest (RF) and Extreme Gradient Boosting (XGBoost), were employed to forecast the occurrence of black ice using atmospheric data. Additionally, explainable artificial intelligence techniques, including Feature Importance (FI) and partial dependence Plot (PDP), were utilized to identify atmospheric conditions that significantly increase the likelihood of black ice formation. The machinelearning algorithms achieved a forecasting accuracy of 90%, demonstrating reliable performance. FI analysis revealed distinct key predictors between the algorithms: relative humidity was the most critical for RF, whereas wind speed was paramount for XGBoost. The PDP analysis identified the specific atmospheric conditions under which black ice was likely to form. This study provides detailed insights into the atmospheric precursors of frost/fog-induced black ice formation. These findings enable road managers to implement proactive winter road maintenance strategies, such as optimizing anti-icing patrol routes and displaying warnings on various message signs, thereby enhancing road safety.
        4,200원
        9.
        2025.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Early warnings have been developed to provide rapid earthquake information, allowing people to prepare as much time as possible. However, since it takes several seconds for an earthquake warning to be issued, the blind zone is inevitable. To reduce the blind zone, information from a single observatory is used to operate an on-site earthquake warning. However, false and missed alarms are still high, requiring continued research and validation. This study predicted Peak Ground Acceleration (PGA) using the characteristic data to reduce false and missed alarms in on-site earthquake warnings. A machine learning prediction model was created using the initial P-wave parameters developed from the characteristic data to achieve this. Then, the model was used to predict the maximum ground acceleration in the southeastern region of the Korean Peninsula. The expected results for six target earthquakes were confirmed to have a standard deviation within 0.3 compared to the observed PGA and the values within ±2 sigma. This method is expected to help develop an on-site early warning system for earthquakes.
        4,000원
        10.
        2025.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Reinforced concrete (RC) columns exhibit cyclic damage, such as strength degradation, under cyclic lateral loading, such as earthquakes. Considering the cyclic damage, the nonlinear load-deformation response of RC columns can be simulated using a lumped plasticity model. Based on an experimental database, this study calibrates lumped plasticity model parameters for 371 rectangular and 290 circular RC columns. The model parameters for adequate flexural rigidity, plastic rotation capacity, post-capping rotation capacity, moment strength, and cyclic strength degradation parameter are adjusted to match each experimentally observed load-deformation response. We have developed predictive equations that accurately relate the model parameters to the design characteristics of RC columns through regression analyses, providing a reliable tool for engineers and researchers. To demonstrate their application, the proposed and existing models numerically simulate the earthquake response of a bridge pier in a metropolitan railway bridge. The pier is subjected to several ground motions, increasing intensity until collapse occurs. The proposed lumped plasticity model showed about 41% less vulnerable to collapse.
        4,000원
        11.
        2025.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Near infrared reflectance spectroscopy (NIRS) is widely used to assess the nutrient composition of forages. In forage, the leaf to stem ratio of alfalfa greatly affects its forage quality, with a high ratio of leaf indicated as high quality. This study aimed to evaluate the predictability of the alfalfa leaf-to-stem ratio and feed value using NIRS. Alfalfa hay was manually separated into leaves and stems by hand and the analysis samples were then made in the controlled range between 0 and 100%. Calibration models (n=320) were developed using modified partial least squares regression (MPLS) based on cross-validation. The optimal calibrations were selected based on the highest coefficients of determination in cross-validation (R2) and the lowest standard error of cross-validation (SECV). The prediction accuracy for the leaf-to-stem ratio (SECV, 5.95 vs. 5.71%; R2, 0.91 vs. 0.91) in alfalfa hay was comparable. For leaves, the standard error of calibration (SEC) was 4.94% (R2=0.94), and for stems, it was 4.81% (R2=0.94). The leaves and stems of the SEC were 4.94% (R2=0.94) and 4.81% (R2=0.94), respectively. The prediction accuracy for feed value, based on the leaf-to-stem ratio, predicted SECV values of 0.92% (R2=0.88) for crude protein (CP) content, 1.92% (R2=0.91) for neutral detergent fiber (NDF) content, 1.36% (R2=0.91) for total digestibility nutrient (TDN) content, and 9.86 (R2=0.81) for relative feed value (RFV). The results of this study demonstrate the potential of the NIRS method as a reliable tool for predicting the leaf-to-stem ratio of alfalfa hay, and show available techniques for routine feed value evaluation.
        4,000원
        12.
        2025.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study aims to improve the interpretability and transparency of forecasting results by applying an explainable AI technique to corporate default prediction models. In particular, the research addresses the challenges of data imbalance and the economic cost asymmetry of forecast errors. To tackle these issues, predictive performance was analyzed using the SMOTE-ENN imbalance sampling technique and a cost-sensitive learning approach. The main findings of the study are as follows. First, the four machine learning models used in this study (Logistic Regression, Random Forest, XGBoost, and CatBoost) produced significantly different evaluation results depending on the degree of asymmetry in forecast error costs between imbalance classes and the performance metrics applied. Second, XGBoost and CatBoost showed good predictive performance when considering variations in prediction cost asymmetry and diverse evaluation metrics. In particular, XGBoost showed the smallest gap between the actual default rate and the default judgment rate, highlighting its robustness in handling class imbalance and prediction cost asymmetry. Third, SHAP analysis revealed that total assets, net income to total assets, operating income to total assets, financial liability to total assets, and the retained earnings ratio were the most influential factors in predicting defaults. The significance of this study lies in its comprehensive evaluation of predictive performance of various ML models under class imbalance and cost asymmetry in forecast errors. Additionally, it demonstrates how explainable AI techniques can enhance the transparency and reliability of corporate default prediction models.
        4,600원
        14.
        2025.03 구독 인증기관·개인회원 무료
        구스 아스팔트(Guss Asphalt) 혼합물은 다짐 없이 시공이 가능한 포장재료로, 1970년대부터 강바닥판 교량에 활용되어 왔다. 본 연구 는 박스 구스 아스팔트 혼합물 공용수명 예측 및 생애주기 비용을 비교분석하기 위해 폴리머 개질 구스, TLA 및 SMA 세 가지 혼합 물의 반사균열 시험, 동탄성계수 시험 및 소성변형시험을 수행하였다. 또한, TxACOL 프로그램을 사용하여 공용수명을 예측하였으며, 예측 결과를 기반으로 각 포장의 생애주기 비용을 분석하였다. 본 연구의 목적은 혼합물의 성능평가를 통해 폴리머 개질 구스 아스팔 트 혼합물의 공용수명을 예측하고 생애주기 비용을 분석하는 것이다. 성능평가 시험결과 폴리머 개질 구스 아스팔트 혼합물이 TLA 구스, SMA 아스팔트 혼합물보다 반사균열, 피로균열 및 소성변형 저항성이 높은 것으로 나타났다. 포장설계 수명 예측 및 생애주기 비용분석결과 폴리머 개질 구스를 사용한 포장설계의 공용성이 가장 우수하며 가장 경제적인 것으로 나타났다.
        15.
        2025.03 구독 인증기관 무료, 개인회원 유료
        고속도로 2차 사고는 선행 사고(1차 사고) 또는 전방 고장 차량에 의해 교통흐름이 변화된 상황에서 발생하는 사고로, 이에 대한 효과적인 교통안전 관리전략이 필요하다. 그러나 일반사고에 비해 데이터 표본이 부족하여 신뢰성 있는 대응 전략 수립에 어려움이 있다. 본 연구는 고속도로에서 발생하는 2차 사고의 발생 주요 요인을 식별하고 예측하기 위해 BERT(Bidirectional Encoder Representations from Transformers) 기반 텍스트 분석 모델과 전통적 머신러닝 모델 (XGBoost, RandomForest, CatBoost)을 비교하였다. 교통사고 세부기록, 원클릭 속보자료 등 비정형 텍스트 및 정형 데 이터를 수집하고 1차 사고에 관한 시공간적 동적 변수를 통합하여 인공지능 기반의 사고 예측 프레임워크를 구축하였다. 특히, BERT 기반 모델을 통해 교통사고 문맥 정보를 고려하여 단어 삽입 및 대체 기법에 따른 2차사고 데이터 표본을 보완하였다. 또한, 설명가능한 AI(XAI) 기법을 활용하여 주요 사고 요인의 기여도를 시각적으로 해석하고 사고 예방 및 정책 수립에 필요한 정보를 제공하였다. 연구 결과, 제안된 하이브리드 접근법 기반 연구 프레임워크는 높은 정확도의 2 차 사고 발생 가능성 예측에 효과적이며, 교통사고관리시스템의 신뢰성과 효율성 향상에 핵심적인 기여를 할 것으로 기 대된다.
        3,000원
        16.
        2025.03 구독 인증기관·개인회원 무료
        본 연구는 한국 기상대 데이터를 활용하여 콘크리트 포장의 깊이별 온도를 예측하는 ANN(Artificial Neural Network) 모델을 개발하는 것을 목표로 한다. 기존의 열평형 방정식 기반 모델은 특정 지역의 기상 데이터를 필요로 하기 때문에 일반적인 적용이 어렵다는 한계를 가지고 있다. 이에 본 연구에서는 ANN을 활용하여 기상대 데이터를 기반으로 범용적 인 온도 예측 모델을 개발하고자 한다. 이를 통해 다양한 지역 및 환경 조건에서도 적용 가능한 모델을 구축하는 것이 목적이다. 본 연구에서는 2017년 1월 1일부터 2018년 12월 31일까지의 1시간 단위 기상 및 온도 데이터를 활용하며, 0.05m, 0.15m, 0.25m, 0.35m, 0.45m 깊이별 온도 데이터를 학습 데이터로 사용한다. 입력 변수로는 기온, 풍속, 강수량, 습도, 일 조량, 일사량, 적설량, 적운량, 지면온도를 포함한다. 이러한 다양한 기상 데이터를 활용하여 신경망 모델을 학습하고, 기 존 방식보다 높은 정확도를 확보하는 것이 연구의 핵심 목표이다. 기존 ANN 구조인 O = WI + B에서 확장된 O = W(I + (WI + B)) + B 형태의 비선형 구조를 적용하여 기존 모델이 가지는 비선형 관계 반영의 한계를 극복하고자 한다. 또한, 선형 다중 은닉층 모델과 비선형 다중 은닉층 모델을 각각 개발하여 성능을 비교하고, 비선형 모델의 필요성과 일반화 능력을 평가할 예정이다. 최종적으로 두 모델의 성능을 평균 제곱 오차 및 평균 절대 오차 등과 같은 평가 지표들을 이용하여 비교 분석하고, 가장 적합한 모델을 도출하고자 한다.
        17.
        2025.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        선박에는 단열을 위한 발포제가 적용된다. 기존의 발포제에는 지구온난화물질인 수소불화탄소(HFC)를 다량 포함하고 있는 문제점이 있으며, 우리나라는 몬트리올 의정서의 ‘키칼리 개정서’를 채택함에 따라 HFC를 ‘24년부터 ’45년까지 기준 수량의 80% 감 축하기로 결정되었다. 이에, 메틸포메이트 원료는 지구온난화지수가 0(HFC는 960~1,430)으로 향후 친환경발포제로 높은 기대를 갖고 있다. 하지만, 메틸포메이트 발포제의 성능은 원료의 순도 및 주변환경에 높은 영향을 받음으로 각 공정환경에 대한 정확한 분류가 필요하다. 이에, 본 논문에서는 주변환경(온도)과 메틸포메이트 순도에 따라, 총 4개의 케이스를 만들었다. 각 케이스에 대해서 10,010 장의 이미지를 학습하고, 이를 구글넷(GoogLeNet)알고리즘을 이용하여 분류하였다. 분류결과 정확도는 96.8%를 갖고, F1-Score는 0.969 를 갖는 것으로 계산하였다.
        4,000원
        18.
        2025.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        아시아ž태평양 지역의 석유 제품 수요가 증가함에 따라, 해상에서 화학물질을 운반하는 탱커선의 운항이 늘어나면서 누출 사고 에 대한 우려도 증가하고 있다. 특히, 탱커선에 적재되는 화학물질 중 하나인 LPG는 비수용성이고, 폭발 하한계가 낮아 쉽게 폭발할 수 있기 때문에 해상에서 LPG 가스가 누출될 경우, 선박에서의 1차 사고뿐 아니라 인근 연안 지역으로 확산되어 2차 사고로 이어질 가능성 이 높다. 이에 본 연구에서는 한국해양대학교가 위치한 연안 지역 인근 해상을 운항 중인 화학물질 운반선에서 LPG 가스가 누출되는 상 황을 가정하고, CFD 시뮬레이션을 통해 학교까지 누출된 가스의 확산 범위를 예측하고자 한다. 연구 결과, 선박 위치에 따라 북쪽, 동쪽, 남동쪽 해상을 운항 중인 화학물질 운반선에서 누출된 가스는 각각 8초, 15초, 12초 만에 연안 지역에 도달하여, 전체 면적의 1/4, 1/6, 1/5 만큼 확산되었다. 또한, 선박에 적재된 가스가 모두 누출된 이후에도 연안지역 내 가스 농도는 각각 15초, 33초, 36초 동안 인화성 범위를 유지하였다. 가스 확산에 영향을 미치는 조건을 분석한 결과, 누출구 크기가 풍속보다 더 큰 영향을 미치는 것으로 확인하였다. 본 사례 연구의 해석기법을 활용해, 연안 항로를 운항 중인 선박에서 누출된 유해 가스가 인근 연안 지역에 확산되는 범위를 예측하고, 이를 기반 으로 기존 대응 지침을 보완하는 기초자료로서 활용되기를 기대한다.
        4,200원
        19.
        2025.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 성장 단계별 돼지의 평균 사료 섭취량을 추정하고, 각 매개변수 간의 상관분석을 통해 변수를 선별한 후, 기계학습 기반 회귀분석을 통해 돼지의 사료 섭취량(FI)을 예측하는 모델을 만들고자 한다. 본 실험은 2023년 9월 14일부터 2023년 12월 15일까지 93일 동안 진행하였다. 사료는 09:00와 17:00 하루에 2회 제공하였으며, 제공된 사료의 양은 돼지의 평균 체중의 5%를 지급하였다. 돼지의 몸무게(PBW)는 매일 09:00에 이동식 돈형기를 사용하여 측정하였다. 축산환경관리시스템(LEMS) 센서를 이용하여, 돈사 내 온도(RT), 상대습도(RH), NH3를 5분 간격으로 수집하였다. 성장 단계를 3단계로 나누었으며, 각 GS1, GS2 및 GS3으로 명명하였다. 각 성장 단계별 평균 사료 섭취량과 표준편차를 구하여, 유의미성과 성장 단계별 사료 섭취의 경향을 분석하였다. 각 모델의 성능평가( , RMSE, MAPE) 시 8:2의 비율로 데이터를 분할하여, 정확도 검증을 수행하였다. 연구 결과 성장 단계별 돼지의 사료 섭취량에 유의미한 차이(p < 0.05)가 있음과 돼지가 성장할수록 일정한 양의 사료를 섭취하는 것을 확인하였다. 또한 각 변수의 상관분석 시 FI와 PBW에서 강한 상관관계가 나타났으며(R > 0.94), 각 모델의 성능평가 결과 RFR 모델이 가장 높은 정확성(  = 0.959, RMSE = 195.9, MAPE = 5.739)을 보였다.
        4,000원
        20.
        2025.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 청소년의 삶의 만족도에 영향을 미치는 주요 요인을 탐색하 기 위해 의사결정나무모형과 로지스틱 회귀분석을 활용하였다. 연구는 경 상북도 내 중학교 5개교에 재학 중인 1,716명의 학생들을 대상으로 수행 되었으며, 부모양육태도, 교사와의 관계, 친구관계, 사회정서역량 등을 주 요 독립변인으로 설정하였다. 분석은 SPSS 28.0과 Stata 16.0을 활용하 여 이루어졌으며, 기술통계, 상관관계분석, 의사결정나무모형, 로지스틱 회 귀분석 등을 수행하였다. 분석 결과, 의사결정나무모형에서는 사회정서역 량 중 자기인식(자기개념)이 삶의 만족도에 가장 중요한 요인으로 확인되 었으며, 부모양육태도 중 따뜻함과 자율지지, 친구관계, 그리고 자기관리 (목표관리)와 (정서조절)도 주요한 영향을 미치는 변수로 나타났다. 로지스 틱 회귀분석에서는 부모양육태도(따뜻함(OR=1.700), 자율지지(OR=1.549)), 교사와의 관계(OR=1.508), 친구관계(OR=1.893), 사회정서역량 중 자기인 식(자기개념)(OR=1.646)과 자기관리(정서조절(OR=1.365), 목표관리(OR=1.279)) 가 삶의 만족도를 유의미하게 예측하였다. 이 연구는 청소년들의 삶의 만 족도를 향상시키기 위해 가정과 학교에서 제공하는 사회적 지지 및 사회 정서역량 개발의 중요성을 강조하며, 이를 위한 교육적·정책적 개입 방안 을 제시한다. 향후 연구에서는 다양한 지역과 연령대를 포함한 종단적 연 구를 통해 보다 일반화된 결과를 도출할 필요가 있다.
        8,100원
        1 2 3 4 5