In this study, we present a sewer pipe inspection technique through a combination of active sonar technology and deep learning algorithms. It is difficult to inspect pipes containing water using conventional CCTV inspection methods, and there are various limitations, so a new approach is needed. In this paper, we introduce a inspection method using active sonar, and apply an auto encoder deep learning model to process sonar data to distinguish between normal and abnormal pipelines. This model underwent training on sonar data from a controlled environment under the assumption of normal pipeline conditions and utilized anomaly detection techniques to identify deviations from established standards. This approach presents a new perspective in pipeline inspection, promising to reduce the time and resources required for sewer system management and to enhance the reliability of pipeline inspections.
As various accidents have occurred in underground spaces, we aim to improve the quality validation standards and methods as specified in the Regulations on Producing Integrated Map of Underground Spaces devised by the Ministry of Land, Infrastructure and Transport of the Republic of Korea for a high-quality integrated map of underground spaces. Specifically, we propose measures to improve the quality assurance of pipeline-type underground facilities, the so-called life lines given their importance for citizens’ daily activities and their highest risk of accident among the 16 types of underground facilities. After implementing quality validation software based on the developed quality validation standards, the adequacy of the validation standards was demonstrated by testing using data from two-dimensional water supply facilities in some areas of Busan, Korea. This paper has great significance in that it has laid the foundation for reducing the time and manpower required for data quality inspection and improving data quality reliability by improving current quality validation standards and developing technologies that can automatically extract errors through software.
We propose a method for developing an in-pipe inspection robot based on multiple inertial sensors. Estimating the position of underground pipelines where satellite signals do not reach remains challenging. High-precision inertial sensors and high-tech mobile robots can be solutions, but their high price limits their general use. We developed an in-pipe inspection robot by combining various low-cost sensors with a microcomputer-based RC car platform. First, we fabricated a multi-inertial sensors module by combining commercial grade low-cost MEMS inertial sensors. The sensor values measured by the multi-inertial sensor are transmitted to the main computer through the MCU, and the attitude angle of the vehicle is finally calculated through the inverse variance weighted average. The travel distance of the robot is estimated by using hall sensors and neodymium magnets attached to the inside of the wheels. Also, we measured the pipe diameter using multiple ultrasonic sensors. We verified the estimation accuracy of each sensor through experiments and consequently estimated the 3D trajectory of the in-pipe robot.
In this study, we propose a flow velocity evaluation scheme based on pressure measurement in pressurized pipeline systems. Conservation of mass and momentum equations can be decomposed into mean and perturbation of pressure head and flowrate, which provide the pressure head and flowrate relationship between upstream and donwstream point in pressurized pipeline system. The inverse impedance formulations were derived to address measured pressure at downstream to evaluation of flow velocity or pressure at any point of system. The convolution of response function to pressure head in downstream valve provides the flow velocity response in any point of the simple pipeline system. Simulation comparison between traditional method of characteristics and the proposed method provide good agreements between two distinct approaches.
As the frequency of seismic disasters in Korea has increased rapidly since 2016, interest in systematic maintenance and crisis response technologies for structures has been increasing. A data-based leading management system of Lifeline facilities is important for rapid disaster response. In particular, the water supply network, one of the major Lifeline facilities, must be operated by a systematic maintenance and emergency response system for stable water supply. As one of the methods for this, the importance of the structural health monitoring(SHM) technology has emerged as the recent continuous development of sensor and signal processing technology. Among the various types of SHM, because all machines generate vibration, research and application on the efficiency of a vibration-based SHM are expanding. This paper reviews a vibration-based pipeline SHM system for seismic disaster response of water supply pipelines including types of vibration sensors, the current status of vibration signal processing technology and domestic major research on structural pipeline health monitoring, additionally with application plan for existing pipeline operation system.
In this study, a method of leakage detection was proposed to locate leak position for a reservoir pipeline valve system using wavelet coherence analysis for an injected pressure wave. An unsteady flow analyzer handled nonlinear valve maneuver and corresponding experimental result were compared. Time series of pressure head were analyzed through wavelet coherence analysis both for no leak and leak conditions. The leak information can be obtained through either time domain reflectometry or the difference in wavelet coherence level, which provide predictions in terms of leak location. The reconstructed pressure signal facilitates the identification of leak presence comparing with existing wavelet coherence analysis.
Hydro-electric power is a method of generating electricity from the rotational force of turbine blades by using the potential energy of a river or reservoir water. Recently, the necessity of small hydropower development is expanding due to the development and support of renewable energy, and because of the difficulty and environmental problems of huge dams. The purpose of this paper is to deal with a method of increasing the efficiency of small water turbine that can be adopt in low head condition. In order to improve the turbine efficiency, channel shape is optimized in order to minimize head loss using computational fluid dynamics. The angle values for the contraction and enlargement part of the channel where the turbine is located are found from the analyses. Additionally, three-dimensional analysis is applied to the optimized channel shape in order to confirm the optimized pipe.
Since sewer rehabilitation program requires long construction period and enormous capital investment, determination of rehabilitation priorities is important with systematic planning considering appropriate evaluation parameters. In this research, we applied PROMETHEE(Preference Ranking Organization METHod for Evaluations) known as very objective and scientific multi-criteria decision-making analysis, using the weights determined by AHP(Analytic Hierarchy Process) for the selected sewer evaluation items to calculate the rehabilitation priorities for each sewer sub-catchment in basin Gusan 1 of Seoul. Preference functions and preference thresholds were estimated for each criterion of ratio of lack of hydraulic capacity of sewers, defect ratio, ratio of sewers with velocity less than its minimum criteria, and density of sewers in the sub-catchment. As a result, it was found that region d had the first priority among four sub-catchments. For each and every sewer located in region d, we could also rank sewers to be rehabilitated urgently.
Sewer deterioration models are needed to forecast the remaining life expectancy of sewer networks by assessing their conditions. In this study, the serious defect (or condition state 3) occurrence probability, at which sewer rehabilitation program should be implemented, was evaluated using four probability distribution functions such as normal, lognormal, exponential, and Weibull distribution. A sample of 252 km of CCTV-inspected sewer pipe data in city Z was collected in the first place. Then the effective data (284 sewer sections of 8.15 km) with reliable information were extracted and classified into 3 groups considering the sub-catchment area, sewer material, and sewer pipe size. Anderson-Darling test was conducted to select the most fitted probability distribution of sewer defect occurrence as Weibull distribution. The shape parameters (β) and scale parameters (η ) of Weibull distribution were estimated from the data set of 3 classified groups, including standard errors, 95% confidence intervals, and log-likelihood values. The plot of probability density function and cumulative distribution function were obtained using the estimated parameter values, which could be used to indicate the quantitative level of risk on occurrence of CS3. It was estimated that sewer data group 1, group 2, and group 3 has CS3 occurrence probability exceeding 50% at 13th-year, 11th-year, and 16th-year after the installation, respectively. For every data groups, the time exceeding the CS3 occurrence probability of 90% was also predicted to be 27th- to 30th-year after the installation.
This study is to improve the efficiency of BTL (Build Transfer Lease) project operation by comparing the infiltration rate based on the data of 5 years of infiltration of the separate sewer system and combined sewer system. In the survey site, the separate sewer system area consists of eight flowmeters in seven treatment basins, and the combined sewer system area consists of eight flowmeters in five treatment basins. The infillration rate was analyzed by night-time domestic flow evaluation method, and the average infiltration rates of the separate sewer system and combined sewer system were 13% and 16%, respectively. Combined sewer system was about 1.3 times higher than the separate sewer system. The average BOD of separate sewer system was 233 mg/L, which was about 2.4 times higher than the combined sewer system was 107 mg/L. In the comparison of the average pipe diameter-length infiltration of separate sewer system and combined sewer system, the separate sewer system and the combined sewer system were about 0.150 m3/d/mm/km and about 0.109 m3/d/mm/km, respectively. The floating population in mixed residential and commercial areas has been identified as the cause. Therefore, we propose a method to calculate the infiltration rate in consideration of the margin ratio in the area where the night active population is concentrated.
This paper suggests a nonlinear pressure consideration scheme through an unsteady pipe network analyzer for leakage detection with a portable pressure wave generator. In order to evaluate the performance of a proposal scheme, linear input pattern has been simulated and experiments had been carried out under both no leakage and one leakage conditions in a reservoir-pipeline-valve system. This method using portable pressure wave generator showed that a leakage can be detected from a reflection where a leakage is originated through time domain analysis. Meaningful similarity in pressure response between nonlinear input pattern and experimental results were found both no leakage and a leakage conditions.
Even though sewers have been conventionally designed to prevent from sediment deposition using a specified minimum velocity or shear stress at a particular depth of flow or with a particular frequency of occurrence, it was appreciated that these methods do not consider the characteristics and concentration of the sediment and the specific hydraulic conditions of the sewer with sediment. In this study, a densimetric Froude number formula was suggested considering particle diameter and volumetric concentration of the sediment as well as flow depth and flowrate, based on several domestic field inspections, which was compared with other formulas proposed by previous investigators. When the sediment concentration was not considered, the calibration coefficient of 0.125-1.5 to the densimetric Froude numbers of this study was needed to obtain the similar ones with previous investigators’. For the densimetric Froude number formula obtained with consideration of sediment concentration, the exponent value of term Cv was almost the same as that of previous results and that of d50/Rh was similar for Fr < 2.2.
If sewage flows for an extended time at low velocities, solids may be deposited in the sewer. Sufficient velocity or tractive force should be developed regularly to flush out any solids that may have been deposited during low flow periods. This study aims to evaluate the periods (T) during which sewage flow greater than the minimum tractive force maintains on a spot in sewer pipe system with lower tractive force or lower velocity than expected in the design step, when a storage tank installed in a place upsteam pours water into the sewer. The effect to T of design factors of storage tank and sewer pipes was evaluated assuming the uniform flow in sewers. When the area of orifice in the storage tank is 0.062 ㎡(or 0.28 m diameter), the maximum T of 31sec was maintained using the usually used preset range of values of several design factors. As the horizontal cross section of storage tank and water depth of storage tank and roughness in sewers increase, T linearly increases. Also, T linearly decreases as the diameter of a sewer pipe increases. Although T gradually decreases as the sewer pipe slope decreases to around 0.005, T decreases sharply when the slope is less than 0.003.
Applicability of corrosion inhibitor was evaluated using pilot scale water distribution pipe simulator. Calcium hydroxide was used as corrosion inhibitor and the corrosion indices of the water were investigated. Corrosion indices, Langelier saturation index (LI) increased by 0.8 and calcium carbonate precipitation potential (CCPP) increased by 9.8 mg/L. This indicated that corrosivity of water decreased by corrosion inhibitor and the effects lasted for 18 days. Optimum calcium hydroxide dose was found to be 3~5 mg/L for corrosion inhibition. We suggest that monitoring of CCPP as well as LI need to be conducted to control corrosivity of water.
This study develops a model to estimate the economic life of the large-diameter water supply pipeline in Korea by supplementing existing methods used to perform similar calculations. To evaluate the developed methodology, the model was applied to the actual target area with the conveyance pipe in P waterworks. The application yielded an economic life computation of 39.7 years, considering the cost of damages, maintenance, and renewal of the pipeline. Based on a sensitivity analysis of the derived results, the most important factor influencing the economic life expectancy was the predicted failure rate. The methodology for estimating the economic life of the water supply pipeline proposed in this study is one of the core processes of basic waterworks facility management planning. Therefore, the methods and results proposed in this study may be applied to asset management planning for water service providers.
Multi-regional water supply system, which installed for supplying multiple water demands, is characterized by large-sized, long-distance, tree-type layout. This system is vulnerable to long-standing service interruption when a pipe breaks is occurred. In this study, a numerical method is proposed to calculate drainage time that directly affects time of service interruption. To begin with, governing equations are formulated to embed the delayed drainage effect by the friction loss, and to resolve complicated connection of pipelines, which are derived from the continuity and energy equations. The nonlinear hydraulic equations are solved by using explicit time integration method and the Newton-Raphson method. The developed model is verified by comparing the result with analytical solution. Furthermore, the model’s applicability is validated by the examples of pipelines in serial, in parallel, and complex layout. Finally, the model is utilized to suggest an appropriate actions to reduce the deviation of draining time in the C transmission line of the B multi-regional water supply system.
A real scale leakage test facility was developed to study the leak signal characteristics of water supply pipelines, and then leak tests were carried out. The facility was designed to overcome the limited experimental circumstances of domestic water supply pipeline experimental facilities. The length of the pipeline, which was installed as a straight line, is 280m. Six pipes were installed on a 70m interval with different pipe material and diameters that are DCIP(D200, D150, D100, D80), PE(D75) and PVC(D75).The intensity of the leakage is adjusted by changing the size of the leak hole and the opening rate of ball valve. Various pressure conditions were simulated using a pressure reducing valve.To minimize external noise sources which, deteriorate the quality of measured leak signal, the facility was built at a quiet area, where traffic and water consumption by customers is relatively rare. In addition, the usage of electric equipment was minimized to block out noise and the facility was operated using manual mode. From the experimental results of measured leakage signal at the facility, it was found that the signal intensity weakened and the signal of high frequency band attenuated as the distance from the water leakage point increased.