검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 70

        1.
        2024.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study develops a model to determine the input rate of the chemical for coagulation and flocculation process (i.e. coagulant) at industrial water treatment plant, based on real-world data. To detect outliers among the collected data, a two-phase algorithm with standardization transformation and Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is applied. In addition, both of the missing data and outliers are revised with linear interpolation. To determine the coagulant rate, various kinds of machine learning models are tested as well as linear regression. Among them, the random forest model with min-max scaled data provides the best performance, whose MSE, MAPE, R2 and CVRMSE are 1.136, 0.111, 0.912, and 18.704, respectively. This study demonstrates the practical applicability of machine learning based chemical input decision model, which can lead to a smart management and response systems for clean and safe water treatment plant.
        4,000원
        5.
        2024.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        실제세계에서 데이터 수집의 비용과 한계를 고려할 때, 시뮬레이션 생성 환경은 데이터 생성 과 다양한 시도에 있어 효율적인 대안이다. 이 연구에서는 Unity ML Agent를 로그라이크 장 르에 적합한 강화학습 모델로 구현하였다. 간단한 게임에Agent를 이식하고, 이 Agent가 적을 인식하고 대응하는 과정을 코드로 작성하였다. 초기 모델은 조준사격의 한계를 보였으나 RayPerceptionSensor-Component2D를 통해 Agent의 센서 정보를 직접 제공함으로써, Agent가 적을 감지하고 조준 사격을 하는 능력을 관찰할 수 있었다. 결과적으로, 개선된 모델 은 평균3.81배 향상된 성능을 보여주었으며, 이는 Unity ML Agent가 로그라이크 장르에서 강화학습을 통한 데이터 수집이 가능함을 입증한다.
        4,000원
        6.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The government is implementing a policy to expand eco-friendly energy as a power source. However, the output of new and renewable energy is not constant. It is difficult to stably adjust the power supply to the power demand in the power system. Therefore, the government predicts day-ahead the amount of renewable energy generation to cope with the output volatility caused by the expansion of renewable energy. It is a system that pays a settlement amount if it transitions within a certain error rate the next day. In this paper, Machine Learning was used to study the prediction of power generation within the error rate.
        4,000원
        7.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        내화 구조물에서는 환기 계수, 재료 탄성 계수, 항복 강도, 열팽창 계수, 외력 및 화재 위치에서 불확실성이 관찰된다. 환기 불확실성 은 화재 온도에 영향을 미치고, 이는 다시 구조물 온도에 영향을 미친다. 이러한 온도는 재료 특성과 함께 불확실한 구조적 응답으로 이어지고 있다. 화재 시 구조적 비선형 거동으로 인해 몬테카를로 시뮬레이션을 사용하여 화재 취약성을 계산하는데, 이는 시간이 많 이 소요된다. 따라서 머신러닝 알고리즘을 활용해 화재 취약성 분석을 예측함으로써 효율성을 높이고 정확성을 확보하려는 연구가 진행되고 있다. 이 연구에서는 화재 크기, 위치, 구조 재료 특성의 불확실성을 고려하여 철골 모멘트 골조 건물의 화재 취약성을 예측 했다. 화재 시 비선형 구조 거동 결과를 기반으로 한 취약성 곡선은 로그 정규 분포를 따른다. 마지막으로 제안한 방법이 화재 취약성 을 정확하고 효율적으로 예측할 수 있음을 보여주었다.
        4,000원
        8.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : Construction cost estimates are important information for business feasibility analysis in the planning stage of road construction projects. The quality of current construction cost estimates are highly dependent on the expert's personal experience and skills to estimate the arithmetic average construction cost based on past cases, which makes construction cost estimates subjective and unreliable. An objective approach in construction cost estimation shall be developed with the use of machine learning. In this study, past cases of road projects were analyzed and a machine learning model was developed to produce a more accurate and time-efficient construction cost estimate in teh planning stage. METHODS : After conducting case analysis of 100 road construction, a database was constructed including the road construction's details, drawings, and completion reports. To improve the construction cost estimation, Mallow's Cp. BIC, Adjusted R methodology was applied to find the optimal variables. Consequently, a plannigs-stage road construction cost estimation model was developed by applying multiple regression analysis, regression tree, case-based inference model, and artificial neural network (ANN, DNN). RESULTS : The construction cost estimation model showed excellent prediction performance despite an insufficient amount of learning data. Ten cases were randomly selected from the data base and each developed machine learning model was applied to the selected cases to calculate for the error rate, which should be less than 30% to be considered as acceptable according to American Estimating Association. As a result of the analysis, the error rates of all developed machine learning models were found to be acceptable with values rangine from 17.3% to 26.0%. Among the developed models, the ANN model yielded the least error rate. CONCLUSIONS : The results of this study can help raise awareness of the importance of building a systematic database in the construction industry, which is disadvantageous in machine learning and artificial intelligence development. In addition, it is believed that it can provide basic data for research to determine the feasibility of construction projects that require a large budget, such as road projects.
        4,000원
        9.
        2023.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        인공지능은 4차 산업혁명의 프레임이 소개된 이후 점차 보편적인 기술로 자리를 잡아가고 있으며, 인공지능 관련 특허 출원도 크게 증가하고 있다. 최근에는 특허 생태계가 출원 건수 위주의 양적 경쟁에서 고품질의 특허 확보라는 질적 경쟁으로 패러다임이 변화되면서, 저품질 특허로 인한 비용 손실에 관심이 높아지고 있다. 이러한 배경으로 본 연구에서는 머신러닝과 Doc2Vec 알고리즘을 활용하여 특허 품질을 예측하는 방법을 제안하고자 한다. 본 연구를 위해 WIPO에서 정의한 CPC 코드를 활용하여 미국 특허청(USPTO)에 등록된 인공지능 관련 특허 데이터를 추출하였고, 이를 통해 정형 데이터 기반 19개 변수, 비정형 데이터 기반 7개 변수를 개발하였다. 특히, 새롭게 제안하는 Doc2Vec 알고리즘을 이용한 제목과 초록 텍스트 유사도 변수는 고품질 특허를 예측하는데 영향을 미칠 것으로 판단된다. 이에 유사도 변수의 효과를 확인하기 위해 유사도 변수를 포함한 앙상블 기반 머신러닝 모델과 포함하지 않은 모델을 개발하여 비교하였다. 실험 결과, 유사도 변수를 포함한 모델이 AUC 0.013, f1-score 0.025가 높게 나타나 더 우수한 성능을 보였다. 이는 유사도 변수가 고품질 특허 예측에 기여한다는 것을 시사한다. 또한, SHAP을 이용하여 블랙박스 형태의 머신러닝 변수 영향도를 설명하였다. 본 연구를 통해 핵심 기술 분야인 인공지능과 같은 영역에서 특허의 품질을 예측하고, 고품질 특허 개발을 장려함으로써 사회적 가치를 실현하는 데 기여할 수 있을 것으로 기대한다.
        5,800원
        11.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Fouling is an inevitable problem in membrane water treatment plant. It can be measured by trans-membrane pressure (TMP) in the constant flux operation, and chemical cleaning is carried out when TMP reaches a critical value. An early fouilng alarm is defined as warning the critical TMP value appearance in advance. The alarming method was developed using one of machine learning algorithms, decision tree, and applied to a ceramic microfiltration (MF) pilot plant. First, the decision tree model that classifies the normal/abnormal state of the filtration cycle of the ceramic MF pilot plant was developed and it was then used to make the early fouling alarm method. The accuracy of the classification model was up to 96.2% and the time for the early warning was when abnormal cycles occurred three times in a row. The early fouling alram can expect reaching a limit TMP in advance (e.g., 15-174 hours). By adopting TMP increasing rate and backwash efficiency as machine learning variables, the model accuracy and the reliability of the early fouling alarm method were increased, respectively.
        4,000원
        13.
        2023.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nowadays, artificial intelligence model approaches such as machine and deep learning have been widely used to predict variations of water quality in various freshwater bodies. In particular, many researchers have tried to predict the occurrence of cyanobacterial blooms in inland water, which pose a threat to human health and aquatic ecosystems. Therefore, the objective of this study were to: 1) review studies on the application of machine learning models for predicting the occurrence of cyanobacterial blooms and its metabolites and 2) prospect for future study on the prediction of cyanobacteria by machine learning models including deep learning. In this study, a systematic literature search and review were conducted using SCOPUS, which is Elsevier’s abstract and citation database. The key results showed that deep learning models were usually used to predict cyanobacterial cells, while machine learning models focused on predicting cyanobacterial metabolites such as concentrations of microcystin, geosmin, and 2-methylisoborneol (2-MIB) in reservoirs. There was a distinct difference in the use of input variables to predict cyanobacterial cells and metabolites. The application of deep learning models through the construction of big data may be encouraged to build accurate models to predict cyanobacterial metabolites.
        4,300원
        14.
        2023.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        목적 : 4차 산업혁명이 진행됨에 따라 타각적 굴절검사값, 수차 및 동공크기 등을 이용하여 최적의 안경처방값 을 도출해주는 머신러닝(machine learning)을 개발하고자 하였다. 방법: 시력에 영향을 줄 수 있는 안질환 및 전신질환이 없고 안구 수술 이력이 없는 근시안(1,000안)을 대상으로 진행하였다. I-Profilerplus(Zeiss, Berlin, Germany)를 사용하여 타각적 굴절이상도(objective-refraction) 및 안구수차(ocular wavefront-aberration), 동공 크기를 측정하였고, 자각적 굴절이상도(subjective-refraction)는 Visuphor500(Zeiss, Berlin, Germany)를 사용하여 구면 굴절력(S, Diopter), 원주 굴절력(C, Diopter), 난시 축(Ax, °)을 측정하였다. 측정 후, 파이썬(Python, version 3.10)을 이용하여 머신러닝 모델 생성 및 예측 성능을 확인하였다. 결과: 자각적 굴절이상도에서 구면 굴절력에 영향을 미치는 요인은 타각적 구면 굴절력, defocus aberration, spherical aberration, trefoil aberration 순으로 높았고, 원주 굴절력에 영향을 미치는 요인은 타각적 원주 굴 절력, defocus aberration, coma aberration, trefoil aberration 순으로 높았으며, 난시 축은 타각적 난시축만 영향을 미치는 것으로 나타났다. 구면 굴절력, 원주 굴절력, 난시 축의 자각적 굴절이상도와 머신러닝 예상값은 차이가 없는 것으로 나타났다(p=0.976, 0.948, and 0.349, respectively). 결론 : 자각적 굴절이상도를 예측하는 머신러닝 모델을 생성하였고, 해당 모델의 예측된 값과 자각적 굴절이상 도와 유의한 차이가 없는 것을 통해 예측 정확도를 확인하였으며 앞으로 개인 맞춤형 처방을 위한 정확한 안경처 방값을 도출하는데 기초자료가 될 수 있을 것으로 생각된다.
        4,000원
        15.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The entire industry is increasing the use of big data analysis using artificial intelligence technology due to the Fourth Industrial Revolution. The value of big data is increasing, and the same is true of the production technology. However, small and medium -sized manufacturers with small size are difficult to use for work due to lack of data management ability, and it is difficult to enter smart factories. Therefore, to help small and medium -sized manufacturing companies use big data, we will predict the gross production time through machine learning. In previous studies, machine learning was conducted as a time and quantity factor for production, and the excellence of the ExtraTree Algorithm was confirmed by predicting gross product time. In this study, the worker's proficiency factors were added to the time and quantity factors necessary for production, and the prediction rate of LightGBM Algorithm knowing was the highest. The results of the study will help to enhance the company's competitiveness and enhance the competitiveness of the company by identifying the possibility of data utilization of the MES system and supporting systematic production schedule management.
        4,000원
        16.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Gate valves are hydraulic components used to shut-off the water flow in water distribution systems. Gate valves may fail owing to various aspects such as leakage through seats, wearing of packing, and corrosion. Because it is considerably challenging to detect valve malfunctioning until the operator identifies a significant fault, failure of the gate valve may lead to a severe accident event associated with water distribution systems. In this study, we proposed a methodology to diagnose the faults of gate valves. To measure the pressure difference across a gate valve, two pressure transducers were installed before and after the gate valve in a pilot-scaled water distribution system. The obtained time-series pressure difference data were analyzed using a machine learning algorithm to diagnose faults. The validation of whether the flow rate of the pipeline can be predicted based on the pressure difference between the upstream and downstream sides of the valve was also performed.
        4,000원
        17.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        With about 80% of the global economy expected to shift to the global market by 2030, exports of reverse direct purchase products, in which foreign consumers purchase products from online shopping malls in Korea, are growing 55% annually. As of 2021, sales of reverse direct purchases in South Korea increased 50.6% from the previous year, surpassing 40 million. In order for domestic SMEs(Small and medium sized enterprises) to enter overseas markets, it is important to come up with export strategies based on various market analysis information, but for domestic small and medium-sized sellers, entry barriers are high, such as lack of information on overseas markets and difficulty in selecting local preferred products and determining competitive sales prices. This study develops an AI-based product recommendation and sales price estimation model to collect and analyze global shopping malls and product trends to provide marketing information that presents promising and appropriate product sales prices to small and medium-sized sellers who have difficulty collecting global market information. The product recommendation model is based on the LTR (Learning To Rank) methodology. As a result of comparing performance with nDCG, the Pair-wise-based XGBoost-LambdaMART Model was measured to be excellent. The sales price estimation model uses a regression algorithm. According to the R-Squared value, the Light Gradient Boosting Machine performs best in this model.
        4,000원
        19.
        2023.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 2 016년부터 2 02 0년까지 내륙 관측소 중 안개 최다발 지역인 안동을 대상으로 XGBoost-DART 머신러닝 알고리즘을 이용하여 1 시간 후 안개 유무를 예측하였다. 기상자료, 농업관측자료, 추가 파생자료와 각 자료 를 오버 샘플링한 확장자료, 총 6개의 데이터 세트를 사용하였다. 목측으로 획득한 기상현상번호와 시정계 관측으로 측 정된 시정거리 자료를 각각 안개 유[1]무[0]로 이진 범주화하였다. 총 12개의 머신러닝 모델링 실험을 설계하였고, 안개 가 사회와 지역사회에 미치는 유해성을 고려하여 모델의 성능은 재현율과 AUC-ROC를 중심으로 평가하였다. 전체적으 로, 오버샘플링한 기상자료와 기상현상번호 기반의 예측 목표를 조합한 실험이 최고 성능을 보였다. 이 연구 결과는 머 신러닝 알고리즘을 활용한 안개 예측에 있어서, 목측으로 획득한 기상현상번호의 중요성을 암시한다.
        4,600원
        1 2 3 4