Noise is defined as ‘unwanted sound’ or ‘undesired sound’. Recently, the aviation industry has been rapidly developing through convergence with cutting-edge technologies such as UAM. Accordingly, it is expected that new aviation industry models will continue to be created in Korea. In addition, it is expected that aircraft noise will be raised as a new social problem. The characteristic of aircraft noise is that it has a wide transmission range. Therefore, the area affected by aircraft noise is extensive, and the damage area varies depending on the flight path and flight environment. Additionally, it tends to occur continuously in certain areas. This study is an extension of the previous studies Study on noise measurement and analysis of C172 aircraft at Muan Airport and Study on noise measurement and analysis of SR20, and investigated the noise characteristics of various piston engine trainer aircraft operated in Korea. We want to measure and analyze noise.
The performance of various types of silencers used to reduce the micropressure waves radiated from ventilation holes and inclined shafts, which are being studied as measures to reduce micropressure waves in railway tunnels, was evaluated to find an effective silencer. In order to find the optimal silencer, the magnitude and frequency characteristics of the pressure waves emitted from the inclined shaft were analyzed to find an excellent silencer. The evaluation showed that the model with a porous cylinder and a small diameter outer tube was the simplest but performed the best.
PURPOSES : This study evaluates the noise reduction effects of various road paving methods and focuses on low-noise pavements as a cost-effective alternative to sound barriers and tunnels. In addition, this study assesses how noise levels vary with vehicle speed across different paving methods. METHODS : An analysis of variance (ANOVA) was conducted to evaluate the noise performance of different paving methods, and this followed by a post-hoc analysis to examine the differences among the paving methods. Another ANOVA was conducted to evaluate the impact of speed on noise performance. This ANOVA was followed by a post hoc analysis to assess differences by speed. Finally, a covariance analysis was conducted, using speed as a covariate, to evaluate the noise reduction effects of the various paving methods. RESULTS : The results of the analyses showed that noise levels follow the order of General ≈ Non-draining > Single-layer ≈ Doublelayer, thus grouping the paving methods into two categories with significant differences in noise performance. In addition, the noise levels increased with speed, except at 70 and 80 km/h. The covariance analysis resulted in a regression coefficient of 0.267 for speed across all paving methods. A post-hoc analysis grouped the paving methods into three distinct categories: General, Non-draining ≈ Single-layer ≈ Double-layer, with notable noise differences between them. CONCLUSIONS : The analysis of noise performance showed that both the paving method and speed significantly affected the noise levels. The covariance analysis, using speed as a covariate, revealed a consistent regression coefficient of 0.267 across all the paving methods. After controlling for speed, noise differences were observed. The General method showed higher noise levels than did the Non-draining, Doublelayer, and Single-layer methods.
Reducing underwater radiated noise from a ship is a critical issue for ensuring the survivability of the vessel. As high-speed signal processing and interlocking algorithms become more sophisticated, the heat intensity of shipboard equipment is increasing per unit volume. When designing shipboard equipment, it is necessary to consider the trade-off between heat dissipation and noise reduction.
Following an analysis of the trade-offs, it was determined that the arrangement of Fan Ass'y A and B exhibited excellent noise and heat dissipation characteristics. Based on this, PWM control operating zones were derived. It was determined that the placement of Fan Ass'y A and B in the operating zone would increase the PWM duty cycle from 33% to 58% using a signal frequency of 25kHz band with guaranteed reliability. This would increase the noise by approximately 9dB(A) but reduce the internal board reference temperature by up to 15℃.
본 논문은 이탈리아 미래주의 화가 루이지 루솔로가 1913년 3월에 선포한 「소음의 예술」 이 기계의 소리를 찬미하며 새로운 미학을 주창하면서도 한편으로는 미래주의자들이 가졌던 기술 권력에 대한 욕망을 내재하고 있음을 고찰하고자 한다. 미래주의자들은 산업화와 도시 화로의 역동적인 발전과 변화를 옹호했고 현대의 기술 발전을 적극적으로 수용하였다. 루솔 로는 현대 도시의 환경을 반영하는 소음을 음악에 편입시키고 인토나루모리와 같은 소음 악 기를 제작하면서 소음의 미학적인 잠재력을 모색하였다. 본 논문은 루솔로가 소음을 수용하 여 새로운 감각 경험을 제공하는 실험을 전개함으로써 현대 음악의 가능성을 확장한 기여를 인정하지만, 이와 동시에 전쟁의 소음도 긍정했던 점에 주목한다. 이러한 루솔로의 입장을 기계에 대한 미래주의의 태도 및 파시즘의 국가주의와 연관지어 분석하고자 한다. 이를 위하 여 다수의 미래주의 선언문들에서 표명된 기계에 대한 전망을 돌아보고, 기술과 전쟁을 현대 화의 근간으로 삼았던 미래주의의 급진주의적인 전망이 파시즘의 권력에 대한 욕망을 반영 하고 있음을 살펴보고자 한다. 궁극적으로는 「소음의 예술」이 전망했던 미학적인 혁신이 미 래주의가 추구했던 권력 욕망에서 결백하지 않음을 드러내고자 한다.
Noise is a sound that people don't want. In this study, noise is measured for SR20, a general aviation trainer used in Korea. In addition, noise measurement points are selected at Muan Airport, where most of the domestic trainers fly under the supervision of the Ministry of Land, Infrastructure and Transport, and the measured data are analyzed based on this. We also want to analyze the noise characteristics of SR20 aircraft through frequency analysis of the noise characteristics of SR20 aircraft are unique. We want to use this to understand what type of noise the trainer affects in future studies. this study will improve the reliability of the noise prediction scenario by comparing and analyzing the actual measured and predicted values when using the noise prediction program.
Environmental noise occurring on ships has various negative impacts on sailors’ health conditions such as hearing loss, sleep disturbance, psychological stress, etc., so regulations on them are required, but the ship noise regulations are usually applied to only large merchant ships. Although regulations on fishing boats with strong fishing and work intensity are determined to be necessary, there has been little relevant research. This study, therefore, attempted to measure the environmental noise of coastal composite fishing vessels less than two tones and provide the results of basic research on the noise regulations for fishing vessels. It measured them by setting the measurement zones as after side, midship and fore side, and based on the criterion of IMO MSC 337(91). The findings showed that the noise of them often exceeded 75dB(A), the criterion of the open deck noise in the zones in which the load of main engines was increased. In particular, the noise of the stern was as high as 92.2dB(A) during the full ahead. Hence, hearing loss may be caused by such a noise, so a variety of regulations on it are determined to be necessary.
Noise is a sound that humans do not want. In this study, noise is measured for C172, the most frequently used general aviation trainer in Korea and abroad. In addition, in this study, noise measurement points are selected for Muan Airport, where most of the domestic training aircraft fly under the supervision of the Ministry of Land, Infrastructure and Transport. Based on this, the measured data is scaled and analyzed. In addition, we intend to analyze what characteristics C172 aircraft have unique through frequency analysis of noise of C172. Through this, it is intended to understand what type of noise training aircraft affect in future studies.
Currently, many complaints have been filed by local residents on helicopter noise while the law on noise prevention and damage compensation at military airfields and military ranges has been in effect since November 27, 2020. The airfields operated by state agencies are inevitably used to defend the country, defend the country, and protect the lives of the people, but various efforts are needed to minimize noise complaints. In general, helicopters operating in a specific area exhibit different noise frequencies depending on the number or size of wings for each type, takeoff speed, and takeoff altitude. Therefore, by measuring and analyzing noise in the take-off stage of a number of helicopters operating in a specific area, this study aims to present more effective noise prevention measures by analyzing the compliance of each type of helicopter with variables such as take-off speed, take-off altitude, and rise rate. Therefore, the results of this study will be significant in terms of resolving complaints and reducing compensation expenditures of local residents around the airport.
목적 : 소음으로 인한 스트레스가 다양한 시기능에 미치는 영향에 대해 알아보고자 하였다.
방법 : 안과적 질환, 수술이력 및 안구운동에 이상이 없는 젊은 성인 60명(23.12±1.26세)을 대상으로 하였으며 소음에 노출되기 전, 후로 지각된 스트레스 척도, 최대조절력, 조절반응량, 원-근거리 사위량, 비침습적 눈물 막 파괴시간의 변화를 관찰하였다.
결과 : 소음 스트레스에 노출이 된 후에는 지각된 스트레스 척도는 증가하였다. 푸쉬업 및 마이너스렌즈 부가 법으로 측정된 최대조절력과 조절반응량은 감소하였고, NITBUT 역시 감소하였으며, 원-근거리 사위량은 증가하는 경향을 나타내었다.
결론 : 본 연구의 결과를 통해 소음 스트레스는 시기능에 다양한 형태로 영향을 미치고 있다고 볼 수 있으며, 굴절검사 및 시기능 평가 시 주변 환경에 의한 소음 스트레스가 작용하지 않도록 검사실 환경을 구성하는 것이 중요할 것이라 사료된다.
철도소음은 도시지역의 철도건설과 유지에 가장 큰 장애 요소 중 하나이므로 보다 효과적으로 철도소음을 저감하기 위한 연구가 활발히 진행되고 있다. 방음터널은 철도소음을 저감할 수 있는 가장 효과적인 방법 중 하나이나, 하절기 높은 내부 온도 증가로 인하여 궤도좌굴 또는 전력, 신호 등 선로 설비의 안정성을 저하시킬 우려가 있다. 이러한 온도 상승 문제는 통기 형 방음판을 이용하여 해결할 수 있으나, 방음터널 적용 시의 소음저감 성능에 대한 연구는 미흡한 상황이다. 이 논문에서는 수치해석을 통하여 통기형 슬릿방음판의 효과적인 방음터널 적용 방법에 대한 연구 결과를 제시하였다. 수치해석은 음향해석 프로그램인 Pachyderm Acoustics으로 모델링한 복선 방음터널을 이용하여 수행하였다. 철도소음은 기존 연구결과를 이용하여 모사하였으며, 슬릿방음판의 적용 위치가 다른 6가지 경우에 대하여 소음저감 효과 변화를 검토하였다. 음향해석 결과 20% 정도 의 슬릿방음판 적용 시에도 철도소음을 최소 5dB 감소할 수 있는 것으로 나타났다.
PURPOSES : The purpose of this study is to estimate the reduction in traffic noise in a double-layered specific porous pavement at roadsides based on variations in traffic volume and driving speed.
METHODS : A statistical pass-by (SPB) method was employed in this study to measure noise. Variations in the following parameters were measured: running speed, heavy traffic percentage, and traffic volume.
RESULTS : Quantitative analysis revealed that the double-layered porous pavement reduced noise levels by 9.16 dB(A) at a 95% confidence level at the sides of roads.
CONCLUSIONS : As a countermeasure of traffic noise, porous pavement has been recommended. This research quantitatively proved that double-layered porous pavement can reduce traffic noise by more than 9.0 dB(A) at roadsides
In this study, numerical analysis was carried out to develop low-noise axial fans, which are often used for ventilation in houses. A commercial program and the turbulence models are used for the analysis of internal fan. Proudman acoustic power model and the Curle surface acoustic power model were used for analysis. As a result, the distribution of flow velocity and pressure around the blade and guide of the fan was high, and low in the center of the fan. Noise from the inner wall of the fan case and the blade surface was the highest at the body and vane connections of the blade, and low at the center of the vane and the center of the body.
PURPOSES : The purpose of this study is to estimate the reduction of traffic noise in a double-layered specific porous pavement based on the traffic speed variation.
METHODS : The close-proximity method was used in noise measurement, and the running speed was measured at 10 km/h and from 50 to 80 km/h.
RESULTS : From the quantitative analysis, it was found that the double-layered porous pavement reduced by 9.4 dB (A) on the average and 9.16 dB (A) at a 95% confidence level.
CONCLUSIONS : The use of porous pavements have been recommended to minimize traffic noise. In this study, it is quantitatively demonstrated that the double-layered porous pavement can reduce the traffic noise by more than 9.0 dB(A).