본 연구는 서울시를 대상으로 여름철 지표온도(LST)에 영향을 미치는 공간적 요인을 분석하고, 지역별 영향력의 이질성을 파악하고자 하였다. 이를 위해 Landsat 8 위성영상을 활용하여 2024년 여름철 평균 지표온도를 산출하고, 자연환경, 도시구조, 인구활동, 토지이용 변수들을 250m 격자 단위로 구축하였다. 전역적 회귀분석(OLS)과 지리가중회귀분석(GWR)을 수행한 결과, GWR 모형이 더 높은 설명력(R2 = 0.878)과 낮은 AIC 값을 보여 공간적 적합도가 우수함을 확인하였다. 또한 Local R2 분포를 통해 모형의 설명력이 지역별로 상이함을 확인하였고, 변수별 회귀계수의 공간 분포를 통해 열환경 형성 요인의 비선형성과 공간 비정상성을 실증적으로 확인하였다. 본 연구는 서울시의 열환경 대응을 위한 지역 맞춤형 공간정책 수립에 기초자료를 제공하며, 도시열섬의 불균형 해소 및 열취약지역 관리 전략의 수립에 기여하고자 하였다.
본 연구는 다라수 씨앗 추출물의 생리활성을 평가하여 식품 원료로서의 활용 가치를 검증하 고자 하였다. 다라수 씨앗 추출물의 성분, 항산화, 세포독성, 항염증 분석을 기반으로 효능을 평가하였 다. 그 결과, 다라수 씨앗 추출물은 총 플라보노이드 16.50 mg/100g, 총 폴리페놀 699.66 mg/100g, 비 타민 C 4.44 mg/100g의 함량을 나타냈으며, DPPH 및 ABTS 라디컬 소거 활성이 농도 의존적으로 증 가하였다. 대조군과의 비교했을 때, 세포독성은 200 ㎍/㎖ 농도까지 95% 이상의 생존율을 보였고 해당 농도에서 iNOS 유전자 발현량과 NO 생성량, TNF-α 발현량을 유의성 있게 억제하였다. 이러한 결과 는 다라수 씨앗 추출물이 항산화 및 항염증 효능을 가진 안전한 식품 원료임을 입증하였다. 따라서 본 연구는 다라수 씨앗을 기반으로 한 신규 식품 개발 원료로의 활용 가능성을 제시하는 기초자료가 될 것 으로 기대된다.
본 연구에서는 내열성을 가지고 포자를 형성하는 Bacillus spp. 중 국내 분리 균주인 G. thermodenitrificans subsp. Calidus와 U. suwonensis 포자의 열 저항성 비교하여 레토르 트 식품의 멸균 여부 확인에 이용 가능성을 판단하고자 하 였다. G. thermodenitrificans subsp. Calidus 포자의 121oC에 서 D-value는 1.6±0.03분이며, Z-value는 31.2±1.49oC으로 나 타났다. U. suwonensis 포자의 121oC에서 D-value는 1.2±0.02분이며, Z-value는 31.1±0.48oC으로 나타났다. 두 균주 모두 식품의 멸균 여부 확인에 사용되는 C. botulinum 포자의 121oC에서의 D-value보다 높은 것으로 확인되었다. 따라서 레토르트 식품 멸균 여부를 판단하는데 C. botulinum 과 함께 국내 분리 균주인 G. thermodenitrificans subsp. Calidus와 U. suwonensis의 포자를 사용할 수 있을 것으로 판단된다.
This paper presents a finite-difference method (FDM)-based heat-transfer model for predicting black-ice formation on asphalt pavements and establishes decision criteria using only meteorological data. Black ice is a major cause of winter road accidents and forms under specific surface temperature and moisture conditions; however, its accurate prediction remains challenging owing to dynamic environmental interactions. The FDM incorporates thermodynamic properties, initial pavement-temperature profiles, and surface heat-transfer mechanisms, i.e., radiation, convection, and conduction. Sensitivity analysis shows the necessity of a 28-d stabilization period for reliable winter predictions. Black-ice prediction logic evaluates the surface conditions, relative humidity, wind speed, and latent-heat accumulation to assess phase changes. Field data from Nonsancheon Bridge were used for validation, where a maximum prediction accuracy of 64% is indicated in specific cases despite the overestimation of surface temperatures compared with sensor measurements. These findings highlight the challenges posed by wet surface conditions and prolonged latent-heat retention, which extend the predicted freezing duration. This study provides a theoretically grounded methodology for predicting black ice on various road structures without necessitating additional measurements. Future studies shall focus on enhancing the model by integrating vehicle-induced heat effects, solar radiation, and improved weather-prediction data while comparing the FDM with machine-learning approaches for performance optimization. The results of this study offer a foundation for developing efficient road-safety measures during winter.
This study was conducted using mold heat. By developing the cleaning process technology, the production test was improved by twice, and the heat washing time reduction test and defect rate were also reduced. We designed an automatic production system for automatic heat torches and devised an automated continuous process system to improve the mold process. The production capacity test doubled the production rate of the product per 1 hour from the target of 500 to 1,040 per hour, and the heat cleaning time reduction test measured the time from the beginning of heat injection to the product sample during the production process and the end time, which shortened the development target of 5 seconds (sec) to 2.78 seconds (sec), and the defect rate was reduced to 4.25% as a result of the defect rate test. The system development of this project has doubled the production volume
The heat transfer characteristics of double-pipe spiral heat exchanger using aluminum oxide nano-fluid were investigated by three different sizes of curvature size, experimentally. Five concentration of nano-fluid as working fluid were made and tested to analyze the heat transfer characteristics. As results, the heat transfer performance was improved at 0.25% of nano-fluid due to high thermal conductivity, however, as the concentration of nanofluid increased (~2.0%), the heat transfer performance deteriorated due to the increase in thermal resistance caused by the sedimentation of particles in the flow path. In addition, the nano-fluid has a higher pressure drop than water due to its high density and viscosity. The optimal range for heat transfer enhancement of nano-fluid was found to be less than 4.0 LPM in flow rate and 0.25% of nano-fluid concentration in this study.
In the development of a digital multi-process welding machine, we aimed to analyze the heat dissipation effects resulting from changes in the transformer's shape. Two installation configurations for the transformer, vertical and horizontal, were proposed. Thermal-flow analysis was conducted for the welding machine, taking into account variations in spacing between each proposed configuration. The results indicated that the shape and spacing of the components did not significantly alter the airflow around the reactor coil, which is the main heat-generating component of the machine. When comparing the heat dissipation effects across models with different transformer spacings, it was observed that models with narrower spacing exhibited improved heat dissipation, while the vertical configuration demonstrated a slightly higher heat dissipation effect overall. Transient analysis revealed the irregularities in internal flow and the resulting scattered temperature distribution over time within the welding machine.
We have performed an experiment to evaluate the efficacy of salt and hot water treatments in soil for managing situations where high-risk plant-parasitic nematodes (PPNs) are detected in farms and flower shops that cultivate foliage plants. The density of Pratylenchus penetrans was reduced by 100% with salt treatments of 20 and 40 kg m-2, while decreases of 95% and 99.8% were observed with treatments of 5 and 10 kg m-2, respectively. In the hot water treatment, Pratylenchus penetrans decreased by 97.6% compared to the initial density. The salt treatment resulted in a decrease in pH and an increase in electrical conductivity (EC) compared to untreated soil. However, other characteristics, including organic matter content, available phosphorus, total nitrogen (T-N) rate, and exchangeable cations, did not differ from the control. In the case of hot water treatment, all properties were similar to those in the untreated group. As a result of this study, salt applications of more than 20 kg m-2 and hot water at 96°C could serve as effective control methods when high-risk PPNs are detected in flower shops and greenhouses located in urban or near-urban areas.
Light-weight ceramic insulation materials and high-emissivity coatings were fabricated for reusable thermal protection systems (TPS). Alumina-silica fibers and boric acid were used to fabricate the insulation, which was heat treated at 1250 °C. High-emissivity coating of borosilicate glass modified with TaSi2, MoSi2, and SiB6 was applied via dip-and-spray coating methods and heat-treated at 1100°C. Testing in a high-velocity oxygen fuel environment at temperatures over 1100 °C for 120 seconds showed that the rigid structures withstood the flame robustly. The coating effectively infiltrated into the fibers, confirmed by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction analyses. Although some oxidation of TaSi2 occurred, thereby increasing the Ta2O5 and SiO2 phases, no significant phase changes or performance degradation were observed. These results demonstrate the potential of these materials for reusable TPS applications in extreme thermal environments.
Infrared radiation accounts for approximately 50% of the solar spectrum. Specifically, the near-infrared (NIR) spectrum, ranging from 760 nm to 2500 nm, is primarily responsible for solar heat gain, increasing indoor temperatures and reducing heating and cooling efficiency. To address this issue, we developed a highly transparent thermo-shielding flexible film that maintains a high transmittance of the visible region (T = 80%) while reducing the transmittance of the NIR region (T ≈ 0%). NIR-absorbing indium tin oxide (ITO) nanocrystals were coated onto polyethylene terephthalate (PET) films, and both films were sandwiched to improve the NIR absorption properties and protect the nanocrystal film layer. The fabricated films were applied to a model house and decreased the indoor temperature by approximately 8°C. Our study demonstrates that energy consumption can be reduced by ITO nanocrystal-coated flexible films, with potential implications for the smart window and mobility markets.
초음속 혹은 극초음속 미사일의 레이돔은 공력 가열로 인해 과도한 열유속에 노출된다. 또한 미사일은 발사 후 속도와 고도가 변화 하면서 이에 따라 레이돔에 가해지는 열유속이 변화한다. 이러한 열부하에 의해 레이돔의 온도가 소재의 허용 온도를 초과하면, 레이 돔은 레이더를 보호하는 기능을 상실하게 된다. 따라서 비행 시나리오에 따른 레이돔의 열전달 특성을 고려하여 레이돔을 설계해야 한다. 본 연구에서는 준-비정상 기법을 적용하여 가상의 비행 시나리오에서의 레이돔의 열전달 특성을 분석하고 준-비정상 기법의 정 확도와 효율성을 평가하였다. 준-비정상 기법을 적용하여 시간에 따른 레이돔 외벽의 열유속과 온도 분포를 도출하였으며, 15초 이후 레이돔 외벽의 온도가 소재의 허용 온도 이상으로 가열되는 부분이 있는 것을 확인하였다. 또한 준-비정상 기법을 통해 도출된 결과 와 비정상 해석 결과를 비교하여 레이돔 평균 온도 측면에서 15% 이내의 오차로 예측할 수 있고 해석 소요 시간은 75%가 단축되는 것 을 확인하여 준-비정상 기법의 효율성을 입증하였다.
2021년 기준 4,339개소의 공공하수처리시설에서 발생하는 하수찌꺼기는 년간 4,271,110톤으로 하수처리장 신·증설 등으로 인해 매년 증가하고 있다. 하수찌꺼기 등 유기성폐자원의 처리를 위해서 퇴비화, 혐기성 소화, 열분해, 소각, 매립 등 다양한 방법이 적용되고 있다. 특히 혐기성 소화는 잔류고형물 저감, 자본비와 운영비 절감, 바이오에너지 생산 및 환경에 대한 영향 최소화 등의 장점을 지니고 있어 실행 가능한 방법 중의 하나로 간주되고 있다. 그러나 하수찌꺼기 등과 같이 고형물을 함유한 유기성폐자원의 혐기성 소화 시 가수분해 반응은 율속단계로 알려져 있다. 따라서 혐기성 소화 시 가수분해 효율을 증진하기 위하여 초음파, 마이크로웨이브, 화학적 전처리, 열가수분해 등의 방법이 적용되고 있다. 특히 열가수분해의 경우 지난 20년간 관련 연구가 꾸준히 이루어져 많은 수의 실 규모 시설이 현장에 적용되었다. 그럼에도 불구하고 높은 에너지 소비, 혐기성 소화 저해물질 생성 및 색도로 인한 자외선 소독 효율 저감 등으로 인해 아직도 관련 연구가 지속적으로 진행 중이다 따라서 본 논문에서는 하수찌꺼기의 안정화와 혐기성 소화조의 효율 향상을 위해 가용화 기술 중 대표적이고 상용화가 가장 많이 이루어진 열가수분해에 대해 고찰하고자 한다. 특히 하수처리시설에서 열가수분해와 혐기성 소화조를 연계 하는 경우 예상되는 문제점과 해결방안에 대한 제시를 통해 혐기성 소화조의 안정성 및 메탄 발생량 향상, 하수처리시설 찌꺼기의 효율적 저감 및 에너지 자립화에 기여하고자 한다.
이 연구는 상변화 물질(PCM)을 함침시킨 경량 골재(LWA)를 활용한 고강도 콘크리트의 개발에 중점을 두고 있다. 상변화 온도가 5.5°C인 Tetradecane을 PCM으로 사용하였으며, LWA(Expended shale, ES)가 PCM 운반체 역할을 수행하였다. ES의 공극 은 진공 함침 기법을 통해 PCM으로 충전하였고, PCM-ES 복합체의 누출을 방지하기 위해 이중 코팅 처리가 추가로 이루어졌다. PCM-ES에 대한 시차주사열량계 시험 결과, 발열 및 흡열 엔탈피가 각각 96 J/g와 97 J/g로 나타났다. 콘크리트 혼합물은 밀도 최적 화를 위해 마이크로 실리카(MS), 실리카 분말(S), 실리카 모래를 사용하여 설계되었으며, PCM-ES는 실리카 모래의 25% 및 50%를 체 적 기준으로 대체하였다. 기계적 강도 테스트 결과, PCM-ES 콘크리트는 25% 및 50% 대체 시 각각 56.39 MPa와 45.94 MPa의 압 축 강도를 기록하였다. 열 성능 테스트는 다양한 주변 온도 조건에서 PCM-ES 콘크리트의 거동을 확인하기 위해 수행되었다. PCM-ES 콘크리트는 15°C에서 −5°C까지의 세 가지 열 사이클 시험을 진행하였으며, 이 과정에서 내부 온도가 지속적으로 모니터링 되었다. 결과적으로 주변 온도가 −5°C로 떨어지더라도 콘크리트 내부 온도는 0°C 이상을 유지하는 것으로 나타났다.
정원과 대조구 간 열 환경 요소의 차이와 정원 구성 요소 간 열 환경과 열 스트레스 지수의 차이에 대한 결과는 다음과 같다. 정원과 대조구 간 열 환경 요소의 시계열 변화에서 대기 온도의 차이는 0.8°C에서 2.4°C까지 나타났고, 흑구 온도는 4.4°C까 지 나타났으며, WBGT는 1.6°C 차이가 나타났다. 대조구에 비 해 정원의 열 환경이 모든 온도에서 낮게 나타난 것이다. 특히, 대조구와 정원의 온도 증가 폭을 비교해 보면, 정원에서 모두 온도의 완만한 증가 폭을 확인할 수 있었다. 정원이 급격한 온도 차이는 만들어낼 수 없으나, 소규모 녹지를 활용한 지속적인 온도 조절에 효과를 보일 수 있겠다. 이용객이 느끼는 열 스트레 스 지수도 정원에서 낮게 나타나 정원이 열 쾌적감 증진 역할을 할 수 있다고 판단된다. 정원 구성 요소에 따른 열 환경 변화를 비교하였을 때, 목재 소재의 시설물이 표면 온도가 높았고, 녹지 에 의해서 생긴 그늘이 온도 차이를 줄일 수 있는 요소가 되었다. 실외 미기후를 대상으로, 정원 입지 환경 중에 하나인 건물에 의한 그늘과 녹지 그늘이 열 스트레스 지수인 UTCI에서 동일하 게 ‘moderate’ 수준을 나타냈다. 즉, 건물 그늘의 일사 차단 효과로 인해 열 쾌적감이 증진되는데, 건물이 없는 소규모 녹지 에서도 교목과 초지 식재로 열 쾌적감 증진에 효과를 높일 수 있다. 이와 같이 정원 구성 요소에 미기후 조절 효과에 관련이 있는 요소를 선정하였을 때, 건물→수목→주변 포장재→정원 포 장재→시설물의 순서로 정원 입지 선정과 구성 요소 선택에 활 용할 수 있는 가이드를 마련할 수 있을 것이다.
To develop a heat-generating asphalt pavement utilizing a phase-change material (PCM), this study evaluated the application method of a PCM as an asphalt material and the thermal and physical properties of asphalt mixtures. The selection of PCM materials according to the phase-change temperature range suitable for thermal asphalt pavements and the encapsulation method for application to asphalt materials were examined, and encapsulated PCMs (ePCMs) using various materials were produced. The thermal and physical properties were evaluated through chamber experiments and strength tests by applying the ePCMs to asphalt mixtures. The characterization results of the ePCMs showed that ePCM-C had the highest latent heat, thermal stability, and physical stability in the asphalt binder and mixture. The chamber test results showed that ePCM-C, which had high latent heat, had the longest temperature delay time under all conditions. The mixing ratio was calculated by volume to substitute low-density ePCM into the mixture; as the ePCM content increased, the asphalt content also increased. The results of the Marshall stability and indirect tensile strength tests indicated that as the ePCM content increased, the strength and crack resistance properties decreased. Asphalt mixtures containing ePCMs have demonstrated the ability to maintain temperature for a long time within a specific temperature range. If an ePCM is improved such that it is not damaged under the production conditions of asphalt mixtures, it is expected to be sufficiently utilized as a technology for preventing road freezing.
전 세계적으로 배출되는 폐플라스틱을 석유화학제품으로 재활용하는 순환경제가 본격화되고 있다. 따라서, 화학적 재활용 중 하나인 폐플라스틱 열분해유 생산을 위한 파일럿 규모의 시설도 건설되 고 상업적 생산이 시작되고 있다. 본 연구에서는 파일럿 플랜트에서 조건별로 생산된 총 4종의 폐플라 스틱 열분해유를 활용하기 위해 분리된 각각의 유분의 물성 및 구성성분 분석을 통해 나프타, 선박유 및 보일러유 등 다양한 원료‧연료 등으로 사용이 가능한지 확인해보고자 한다. 폐플라스틱 열분해유의 넓은 비점으로 인하여 경질유분은 상압 및 감압증류를 통해 분리하였고, 중질유분은 감압증류를 통해 분 리하였다. 경질유분(fraction 1)은 나프타를 목적으로 물리적 특성, 탄소분포 및 구성성분을 분석하였는 데, 탄소분포, 비점 등은 적합하지만, 초기 폐플라스틱 열분해유에 비해 염소 함량, 올레핀 및 방향족이 높아 전처리공정이 필요하다, 또한 중질유분(fraction 2)은 보일러유 등을 목적으로 할 때, 적합한 밀도, 동점도, 발열량 및 윤활성 등 물리적 특성을 가졌지만, Si 및 전산가 등이 높았다. 분리하고 남은 잔류물 (residue)은 높은 발열량, 낮은 황 함량, 산소 함량 등은 C중유급 연료로서의 사용이 가능할 것으로 판단되었다. 결론적으로, 분리된 폐플라스틱 열분해유에서 분리되는 모든 유분은 전처리만 가능하다면 나프 타 원료뿐만 아니라 저급 연료로도 활용이 가능하리라 판단된다.