검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 36

        2.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        한국산 나문재속 식물에 대한 계통학적 유연관계를 밝히고, 분자계통학적 연구를 통해 나문재속 종간 유연관계를 확인할 수 있는 분자마커를 찾아내기 위해 연구를 수행하였다. 핵 리보솜 DNA ITS와 엽록체 DNA matK, psbA-trnH 그리고 trnL-trnF를 분자마커로 사용하였다. ITS 영역은 칠면초와 해홍나물 그리고 해홍나물과 방석나물을 구분하지 못하였다. psbA-trnH와 trnL-trnF 영역의 염기서열은 칠면초와 방석나물을 구분하지 못하였다. 그러나 4종의 분자마커 영역을 조합하여 분석한 결과 나문재속 식물 5종이 각각 독립적인 계통을 형성하는 것을 확인하였다. 따라서 나문재속 계통관계 분석을 위해서 여러 개의 분자마커 조합이 유용할 것으로 판단된다. 나문재속 내 분류군 간의 계통관계를 명확히 밝히기 위해 차후에 좀 더 많은 생태학적, 형태학적 자료를 조사해야 할 것으로 보인다.
        4,000원
        3.
        2014.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        종의장거리산포는집단의확산과집단간개체의흐름에중요한역할을한다. 본연구는독도에서발견된식물을형태학적특징과핵및엽록체DNA의분자마커를이용하여종을식별한결과, 참빗살나무(노박덩굴과)로확인되었다. 얕은토양층과험준한지형등입지적으로열악한대양섬인독도에서목본의분포는의미있는결과이며, 향후외부유입종의지속적인모니터링이요구된다.
        4,000원
        5.
        2005.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        8일간 생장한 보리 유식물에 72시간 동안 dimethipin을 처리하면서 엽록소 함량의 변화와 광합성적 전자전달 활성을 측정하였다. 10/sup -3/M dimethipin을 72시간 처리한 경우 엽록소 함량이 33% 감소하였다. 이에 비해 7일간 암소에서 생장시킨 후 dimethipin을 처리한 보리 유식물은 녹화 48시간에 10/sup -4/M에서 대조구에 비해 43% 엽록소 함량이 감소하였으며, 엽록소 a/b 비율이 증가하였다. 24시간의 dim
        4,000원
        6.
        1999.12 구독 인증기관 무료, 개인회원 유료
        엽록제 small HSP의 기능을 조사하기 위하여 항상적으로 발현하는 형질전환 식물체를 작성하였다. 고온 스트레스 하에서의 형질전환 식물체의 고온내성을 chlorophyll 형광으로 측정하였다. Leaf disc를 고온조건에서 5분간 처리한 후, 광화학계 II의 불활성화를 나타내는 Fo 값의 증가 또는 Fv 값의 감소치를 조사하였다. 형질전환 식물체는 고온 스트레스 하에서의 이들 값의 증감율이 현격히 감소하였다. 또한 유식물체를 에서 45분간 처리한 후, 에서 계속적으로 배양하였을 때, 비형질전환 식물체는 전부 고사하였으나, 형질전환 식물체의 약 80%는 생존하였다. 이러한 결과는 엽록체 small HSP가 고온 스트레스 하에서 광합성기구를 보호하는데 있어서 중요한 기능을 담당하고 있음을 나타낸다.
        4,000원
        7.
        2018.05 서비스 종료(열람 제한)
        Background : Angelica species are representative medicinal plants and it has been used in traditional medicinal methods, especially, in the traditional Asian medicine. The Angelica species used in conventional medicine varies by country according to specific regulations, i.e. A. gigas Nakai in Korea, A. sinensis Diels in China, and A. acutiloba Kitagawa in Japan. Because of the similarity between the names among Angelica, they can be confused in the market. Methods and Results : In this study, twenty-four chloroplast insertion or deletion (cpInDel) markers were developed from chloroplast DNA of A. gigas Nakai and tested for the classification of Angelica species. Primer sets were designed from flanking sequences of the discovered InDel loci from chloroplast DNA of A. gigas Nakai using CLC Main Workbench with the following parameters : primer length = 18 - 26 bp (Opt. 23 bp); GC% = 50 - 70% (Opt. 60%); Ta = 55 - 62℃ (Opt. 58℃); product size range = 120 - 300 bp. Polymorphism and genotype analysis of 13 Angelica species were performed using the developed cpInDel markers. Conclusion : The 24 cpInDel markers developed in this study could be used for genetic diversity analysis and classification of Angelica species.
        8.
        2017.12 KCI 등재 서비스 종료(열람 제한)
        Background: In the herbal medicinal industry, Angelica gigas Nakai, Angelica sinensis (Oliv.) Diels. and Angelica acutiloba (Siebold & Zucc.) Kitag. are often confused, because the roots of the three species can not be distinguished by their appearance. This confusion can cause serious side effects. In this study, we determined the origins of Angelica roots distributed in the Korean market using the simple sequence repeat (SSR) markers developed based on the A. gigas chloroplast DNA sequence. Methods and Results: We collected twenty seven A. gigas and three A. acutiloba samples from the Seoul, Daegu, and Cheongju herbal medicinal markets. Fifty sections of one collection were mixed and ground to make a powder, which was used for DNA extraction using the cetyl trimethylammonium bromide (CTAB) method. Chloroplast based SSR markers were applied to the DNA for the determination of the species. In addition, polymorphism was found in eight samples. The phylogenetic analysis showed that the A. gigas roots collected from herbal medicinal markets were clearly discriminated from A. sinensis and A. acutiloba even though they were grouped into four clusters. Conclusions: This study showed that chloroplast based SSR markers would help the discrimination of Angelica roots in the Korean herbal medicinal industry and the markers are useful to prevent confusion between Angelica roots.
        9.
        2017.10 KCI 등재 서비스 종료(열람 제한)
        다양한 환경에서 수집한 국내 민들레속 유전자원 수집종의 엽록체 DNA 영역(trnL-trnF와 rps16-trnK) 염기서열을 이용하여 종내․ 간 변이 및 배수성을 구명하여 유전자원 육성의 기초 자료룰 제공하고자 수행하였다. 민들레속 유전자원의 배수성은 털민들레, 서양민들레, 붉은씨서양민들레가 3배체이고, 흰 민들레와 흰노랑민들레는 4배체였다. 염기서열의 길이는 trnLtrnF 영역에서 자생종류인 털민들레, 흰민들레, 흰노랑민들레 가 931 bp에서 935 bp, 서양민들레는 910 bp, 붉은씨서양민들레 는 975 bp로 종간 차이를 나타내었고, 종 특이적 염기서열 88개, 자생종 및 귀화종 특이적 염기서열 41개가 검출되었다. rps16- trnK 영역은 털민들레 882∼883 bp, 흰민들레 875∼881 bp, 흰 노랑민들레는 878∼883 bp 서양민들레 874∼876 bp, 붉은씨서 양민들레는 847∼848 bp로 37개 종특이적 염기서열이 검출되 었다. 염기서열의 유사도는 trnL-trnF 영역에서 0.860∼1.000 사이로 평균 0.949이며, rps16-trnK 영역의 유사도는 0.919∼ 1.000 사이로 평균 0.967이었다. 염기서열을 바탕으로 유연관계를 분석한 결과, trnL-trnF 영역은 크게 자생종류와 귀화종 류로 구분되었으며, 서양민들레와 붉은씨서양민들레는 같은 종 간에 유집되었고, 자생종류는 분리되지 않았으며, rps16-trnK 4개 그룹과 유집되지 않은 5개체로 나뉘었다. 흰노랑민들레는 두 영역 모두 흰민들레와 동일 계통군을 형성하였고, 염기서열 상 두 종간 뚜렷한 차이가 없었다. 유연관계에서 모두 독립적으로 존재한 흰민들레 No. 10 (조계산)과 털민들레 1번(광양)은 민들레 유전자원 육성소재로 활용이 기대된다.
        13.
        2017.05 서비스 종료(열람 제한)
        Background : Codonopsis lanceolata is a flowering perennial climber. The roots are used as medicinal materials or vegetables. C. lanceolata is distributed in India and East Asia such as China, Japan as well as Korea. Recently, demand for C. lanceolata is increasing as a healthy food. In South Korea, this plant is widely cultivated in Gangwon-do province. Although, C. lanceolata is one of the most important medicinal plants in Korea, it is easy to be confused with other species of the same genus. Simple sequence repeat (SSR) marker is a powerful tool for distinguish specific species. In addition, there are many studies that show species-specific polymorphisms in chloroplasts SSR. In this study, we developed chloroplast SSR markers that can distinguish C. lanceolata from 6 Codonopsis species. Methods and Results : We collected 6 Codonopsis species include C. lanceolata. and extrated DNA using CTAB method. The DNA was diluted to 10 ng/㎕ and kept at –20℃. We designed the primer sets using CLC Main Workbench based on chloroplast DNA SSR region of C. lanceolata. PCR was performed using three independent plants for each species. Conclusion : We designed six primer sets from six SSR regions of C. lanceolata cpDNA. All of the primer sets amplified the amplicon effectively. Two of the 6 primer sets had polymorphism. We could distinguish C. lanceolata from 6 Codonopsis species using two primer sets.
        14.
        2017.05 서비스 종료(열람 제한)
        Background : Cudrania tricuspidata Bureau is a widely used medicinal perennial woody plant. Obtaining information about the genetic diversity of plant populations is highly important for conservation and germplasm utilization. In this study, we developed single nucleotide polymorphism (SNP) markers derived from chloroplast genomic sequences to identify distinct Korean-specific ecotypes of C. tricuspidata via amplification refractory mutation system (ARMS)-PCR analyses. We performed molecular authentication of twelve C. tricuspidata ecotypes from different regions using DNA sequences in the chloroplast TrnL-F intergenic region. Methods and Results : SNPs were identified based on the results of nucleotide sequence for the intergenic region of TrnL-TrnF gene (chloroplast). Molecular markers were designed for those SNPs with additional mutations on the second base from SNPs for amplification refractory mutation system-polymerase chain reaction (ARMS-PCR). HRM pattern analyses were performed using the Mx3005P QPCR System (Agilent Technologies, CA, USA). Conclusion : We collected 12 individual lines of C. tricuspidata from various region in South Korea and China. Based on the nucleotide sequence in the trnL-trnF intergenic region of these lines, six SNPs and a deletion of 12 bps were identified and 12 individual lines were able to be grouped in one Korean ecotype and two different ecotypes of chinese lines, chinese line 1 and 2. The SNP markers developed in this study are useful for rapidly identifying these specific C. tricuspidata ecotypes collected from different regions.
        15.
        2016.10 서비스 종료(열람 제한)
        Background : Angelica gigas is a monocarpic perennial plant. A. gigas, also called DangGui or Korean Angelica, is a major medicinal herb used in Asian countries such as Korea, Japan and China. In Korea, we are using the roots of A. gigas. but, Chinese using Angelica sinensis and Japanese using Angelica acutiloba with the same name 'DangGui'. The biggest problem in the use of A. gigas is the confusion with A. acutiloba or A. sinensis. This confusion can cause an medical accident or lack of pharmacological ingredients. In this study, we developed chloroplast InDel markers that can distinguish A. gigas, A. acutiloba or A. sinensis. Methods and Results : We collected 14 Angelica plant samples including A. gigas, A. acutiloba and A. sinensis and extrated DNA using CTAB method. The DNA was diluted to 10 ng/㎕ and kept -20℃. We designed the primer sets using CLC Main Workbench based on chloroplast DNA InDel region of between A. gigas and A. acutiloba. PCR were performed on the 14 Angelica plant samples including A. gigas, A. acutiloba and A. sinensis (5 repeats each). Electrophoresis was performed using fragment analyzer automated CE system. We designed 6 InDel primer sets and the primer sets amplified the amplicons effectively. Three of the 6 primer sets showed polymorphism. Conclusion : We could distinguish A. gigas, A. acutiloba, and A. sinensis using 2 newly developed InDel markers.
        16.
        2016.10 서비스 종료(열람 제한)
        Background : In the herbal medicine market, Angelica gigas, Angelica sinensis, and Angelica acutiloba are all called "Danggui" and used confusingly. We aimed to assess the genetic diversity and relationships among 14 Angelica species collected from different global seed companies. Toward this aim we developed DNA markers to differentiate the Angelica species. Methods and Results : A total of 14 Angelica species, A. gigas, A. acutiloba, A. sinensis, A. pachycarpa, A. hendersonii, A. arguta, A. keiskei, A. atropurpurea, A. dahurica, A. genuflexa, A. tenuissima, A. archangelica, A. taiwaniana, and A. hispanica were collected. The genetic diversity of all 14 species was analyzed by using five chloroplast DNA-based simple sequence repeat (SSR) markers and employing the DNA fragment analysis method. Each primer amplified 3 - 12 bands, with an average of 6.6 bands. Based on the genetic diversity analysis, these species were classified into specific species groups. The cluster dendrogram showed that the similarity coefficients ranged from 0.77 to 1.00. Conclusions : These findings could be used for further research on cultivar development by using molecular breeding techniques and for conservation of the genetic diversity of Angelica species. The analysis of polymorphic SSRs could provide an important experimental tool for examining a range of issues in plant genetics.
        17.
        2016.10 서비스 종료(열람 제한)
        Background : The P. ginseng breeding line G07006, was selected for salt tolerance through salinity screening of mature leaves at the NIHHS of the RDA in 2014-2016. However, it is difficult to maintain a genetically stable breeding line of cross-pollinating crop in the field. Therefore molecular marker required to identify and maintain breeding line G07006. Methods and Results : DNA was extracted following the CTAB DNA extraction protocol (Doyle and Doyle, 1987) with modifications. A pair-end (PE) library was constructed and sequenced using an Illumina MiSeq platform by Lab Genomics, Inc. (Seongnam, Korea). Approximately 4.0 Gb of sequencing data were obtained, and de novo assembled by a CLC genome assembler(v. beta 4.6, CLC Inc., Rarhus, Denmark). The complete chloroplast(CP) genome size is 156,356 bp, including two inverted repeats (IRs) of 52,060 bp, separated by the large single-copy (LSC 86,174 bp) and small single-copy (SSC 18,122 bp) regions. This CP genome encodes 114 unigenes (80 protein-coding genes, four rRNA genes, and 30 tRNA genes), in which 18 are duplicated in the IR regions. Conclusion : This complete chloroplast DNA sequence will provide conducive to discriminate line G070006 (salt-tolerant) and further enhancing genetic improvement program of this important medical plant.
        18.
        2016.08 KCI 등재 서비스 종료(열람 제한)
        Background: In the herbal medicine market, Angelica gigas, Angelica sinensis, and Angelica acutiloba are all called "Danggui" and used confusingly. We aimed to assess the genetic diversity and relationships among 14 Angelica species collected from different global seed companies. Toward this aim we developed DNA markers to differentiate the Angelica species. Methods and Results: A total of 14 Angelica species, A. gigas, A. acutiloba, A. sinensis, A. pachycarpa, A. hendersonii, A. arguta, A. keiskei, A. atropurpurea, A. dahurica, A. genuflexa, A. tenuissima, A. archangelica, A. taiwaniana, and A. hispanica were collected. The genetic diversity of all 14 species was analyzed by using five chloroplast DNA-based simple sequence repeat (SSR) markers and employing the DNA fragment analysis method. Each primer amplified 3 - 12 bands, with an average of 6.6 bands. Based on the genetic diversity analysis, these species were classified into specific species groups. The cluster dendrogram showed that the similarity coefficients ranged from 0.77 to 1.00. Conclusions: These findings could be used for further research on cultivar development by using molecular breeding techniques and for conservation of the genetic diversity of Angelica species. The analysis of polymorphic SSRs could provide an important experimental tool for examining a range of issues in plant genetics.
        19.
        2016.05 서비스 종료(열람 제한)
        Background : Angelica gigas is a monocarpic biennial or short lived perennial plant. A. gigas, also called Dang Gui or Korean Angelica, is a major medicinal herb used in Asian countries such as Korea, Japan and China. In Korea, we are using the roots of A. gigas, but, they are using Angelica sinensis in China and Angelica acutiloba in Japan to obtain many active constituents. The biggest problem in the using of A. gigas would be the confusion with A. acutiloba or A. sinensis. These three plants can't be distinguished by appearance. And the constituent ratios of the three plants are different. This confusion can cause an accident or the pharmaceutical effects do not meet the expectations. In this study, we developed chloroplast SSR markers that can distinguish A. gigas, A. acutiloba and A. sinensis. Methods and Results : We collected A. gigas, A. acutiloba and A. sinensis. and extrated DNA using CTAB method. The DNA was diluted to 10 ng/㎕ and kept -20℃. We designed the primer sets using CLC Main Workbench based on chloroplast DNA SSR region of A. gigas. PCR were performed on the three angelica plant samples (in 5 repeat). Conclusion : We made five primer sets from five SSR regions of A. gigas cpDNA. All of the primer sets amplified the amplicon effectively. Two of the 5 primer sets had polymorphism. We can distinguish A. gigas, A. acutiloba, and A. sinensis using the 2 primer sets
        20.
        2015.12 KCI 등재 서비스 종료(열람 제한)
        Background : Plants belonging to 5 species of the genus Eleutherococcus are currently distributed in the Korean peninsula. The traditional medicine ‘Ogapi’, derived from Eleutherococcus sessiliflorus and other related species, and ‘Gasiogapi’, derived from Eleutherococcus senticosus, are frequently mixed up and marketed. Therefore, accurated identification of their origins in urgently required. Methods and Results : Candidate genes from nuclear ribosomal DNA (nrDNA) and chloroplast DNA (cpDNA) of Eleutherococcus plants were analyzed. Whereas the nrDNA-internal transcribed spacer (ITS) regions were useful in elucidating the phylogenetic relationships among the plants, the cpDNA regions were not as effective. Therefore, a combined analysis with nrDNA-ITS was performed. Various combinations of nrDNA and matK were effective for discriminating among the plants. However, the matK and rpoC1 combination was ineffective for discriminating among some species. Based on these results, it was found that OG1, OG4, OG5, OG7, GS1, GS2, and GS3 were derived from E. sessiliflorus. In particular, it was confirmed that GS1, GS2, and GS3 were not derived from E. senticosus. However, more samples need to be analyzed because identification of the origins of OG2, OG3, OG6 and GS4 was not possible. Conclusion : The ITS2, ITS5a, and matK combination was the most effective in identifying the phylogenetic relationship among Eleutherococcus plants and traditional medicines based on Eleutherococcus.
        1 2