It has been studied that the aluminum extrusion with the ingot-recycled composite billet that is casted. The billet is composed of the inner rod with the recycled and the outer ring with the ingot aluminum. For easy producing the tensile specimens to evaluate the bonding strength between recycled and ingot material, the extrusion die was designed. Two types of the billet are extruded. One is a composite billet that is casted. The other is an assembled billet with the turned bars. The strength is measured from tensile tests with extruded specimens. The effect on the strength of the oxidized layer between the materials has been researched with EDS analysis.
The Anaerobic fluidized bed bioreactor (AFBR) treating synthetic wastewater to simulate domestic sewage was operated under GAC fluidization to provide high surface area for biofilm formation. Although the AFBR achieves excellent COD removal efficiency due to biological activities, concerns are still made with nutrient such as nitrogen remaining in treated wastewater. In this study, FO membrane was applied to treat the effluent produced by AFBR. Removal efficiency with total nitrogen (TN) was investigated with draw solution (DS, NaCl) and hydrodynamic condition (i.e., recirculation flow rate) along FO membranes. Permeability of FO membrane increased with increasing DS concentration. About 85% of TN removal efficiency was observed with the FO membrane using 1 M of NaCl DS. During operational period of a day, no permeate flux decline was observed.
PURPOSES: Surface treatment is a favorable method in the pavement preventive maintenance. This study (Part Ⅰ) aimed to develop the low viscosity filling material for waterproof characteristics and high penetrable and weather resistance, and a series of companion study (Part Ⅱ) presents the coating characteristics and performance analysis using field and lab tests. METHODS : Hydrophobic characteristics of the advanced surface treatment material are observed and measured the filling depth and the permeability for sand and asphalt pavement specimen using the water absorption test and permeability test, X-RAY CT test. Color difference for the weather resistance using ultraviolet ray accelerated weathering test is compared with asphalt pavement specimens. RESULTS : The developed material shows the decreased water absorption and increased impermeable effect because of the hydrophobic characteristics. It is found that the filling depth is about 6mm and weather resistance is better than asphalt pavement specimen. CONCLUSIONS: The advanced hydrophobic - low viscosity filling treatment material is developed in this study (Part Ⅰ) to improve the waterproof characteristics and high filling capacity and weather resistance for the pavement preventive maintenance.
Today, the modification of carbon foam for high performance remains a major issue in the environment and energy industries. One promising way to solve this problem is the optimization of the pore structure for desired properties as well as for efficient performance. In this study, using a sol-gel process followed by carbonization in an inert atmosphere, hollow spherical carbon foam was prepared using resorcinol and formaldehyde precursors catalyzed by 4-aminobenzoic acid; the effect of carbonization temperature and re-immersion treatment on the pore structure and characteristics of the hollow spherical carbon foam was investigated. As the carbonization temperature increased, the porosity and average pore diameter were found to decrease but the compression strength and electrical conductivity dramatically increased in the temperature range of this study (700˚C to 850˚C). The significant differences of X-ray diffraction patterns obtained from the carbon foams carbonized under different temperatures implied that the degree of crystallinity greatly affects the characteristics of the carbon form. Also, the number of re-impregnations of carbon form in the resorcinol-formaldehyde resin was varied from 1 to 10 times, followed by re-carbonization at 800˚C for 2 hours under argon gas flow. As the number of re-immersion treatments increased, the porosity decreased while the compression strength improved by about four times when re-impregnation was repeated 10 times. These results imply the possibility of customizing the characteristics of carbon foam by controlling the carbonization and re-immersion conditions.
자동차용 캠 샤프트의 표면경화를 위해 TiG 용접공정에 의한 재용융처리가 실시되었다. 재용융처리는 캠축에 평행한 방향으로 행하여졌다. 캠 샤프트 소재의 조직은 편상의 흑연과 퍼얼라이트의 회주철 조직으로 구성되어 있으나 재용융 처리후 미세한 퍼얼라이트 및 세멘타이트와 구상 오스테나이트의 레데브라이트 조직으로 변화하였다. 캠 샤프트 모재의경도는 HRc 25~28에서 재용융 처리후에는 HRg 53~55정도로 증가하였다. 다층 용융 처리시 비드가 겹치는 경계에서 검은띠가 관찰되었는데 이 검은띠는 흑연으로 판명되었다. 이 검은띠는 전층의 레데브라이트 조직이 변태된 것으로 주로 세멘타이트와 기지조직의 경계에서 생성되었다. 고밀도 에너지인 레이저 용융처리시에도 재흑연화 현상은 TIG의 경우처럼 관찰되었다. 재흑연화 현상의 확인을 위해서 Gleeble 1500을 이용하여 1100˚C와 1000˚C에서 0.5, 1, 3, 5 및 10초동안 유지한 모의실험을 하였다. 1000˚C에서 0.5초 유지했을 때도 흑연이 발견된 것으로 보아 재흑연화 현상은 어떠한 재용융 처리 공정을 사용하더라도 피할 수 없는 현상임을 확인할 수 있다.
This study provides experimental results of pH restoration of acidified desulfurization seawater by the addition of the alkalinity enhanced seawater and additives (limestone and fly ash). The conservative seawater desulfurization processes use chemical solutions such as caustic soda (NaOH) or calcium hydroxide(Ca(OH)2). The method proposed in this study was aimed at reducing usage of chemicals. A control test was conducted to simulate the existing process without addition of the alkalinity-enhanced seawater and additives (limestone and fly ash). The pH of desulfurized seawater was increased by pH 5.84 through the conservative restoration process (i.e., adding raw seawater and NaOH solution followed by aeration). The 20%, 50%, and 80% of added raw seawater was replaced by the alkalinity-enhanced seawater. From the experimental result, 0.28, 0.89, and 1.05 m3/hr of 48% NaOH solution could be saved when applying the proposed method of the alkalinity enhanced seawater addition. When desulfurized seawater with pH 3.5 was mixed with raw seawater at a ratio of 1:1, the pH of seawater was increased up to pH 6. Therefore, the seawater restoration goal was set as pH 3.5. Experiments were conducted to increase pH of desulfurized seawater to pH 3.5 using additives (fly ash and limestone). Based on these results, the addition of fly ash and limestone to seawater was proved effective for pH restoration of desulfurized seawater.
하수슬러지는 2006년 발표된 국토해양부 「육상폐기물 해양투기 관리 종합대책」에 의거 2012년부터 해양배출이 전면 금지되었다. 2012년 하수슬러지 해양배출 전면 금지에 따라 규정에 의거 매립이 가능한 함수율 75%이하 슬러지는 금고동 매립장에 매립(일 최대 80톤) 건의, 잔여량(함수율 75% 초과)은 민간 폐기물 재활용(복토재 생산)업체에 위탁처리하고 있다. 처리비용 절감을 위한 위탁처리 부산물의 금고동 매립장 복토재 활용 검토와 슬러지 안정적 처리 방안 등을 도출하기 위해 이번 연구를 실시하였다. 본 연구의 내용 및 범위는 민간 폐기물 재활용업체에서 생산된 하수슬러지 부산물의 매립장 복토재 활용 방안이며, 고화토의 기본 물성을 실험하고 역학특성을 평가하여 연구를 진행하였으며 비중시험, pH시험, X-선 형광분석을 이용하여 물성을 실험하였다. 역학특성 평가는 수분함량측정, 일축압축강도시험, 투수시험, 악취시험을 통하여 평가 하였다. 고화물의 복토재 품질 검토 결과 고화처리물의 품질기준에는 만족하여 포설은 가능하나 악취 발생이 심각하여 민원 발생 가능 및 작업자의 안전에 위협을 주므로 반입 가능성은 매우 낮은 것으로 나타났으며, 향후 건조 연료화 시설의 건설/운영 전까지는 다수의 슬러지 처리방법 중 직매립과 고화 복토 방법이 가장 경제적이고 기술적으로 타당한 것으로 판단된다.
The purpose of this study is to evaluate bond strength between sulfur polymer coating material and old concrete. Two kinds of spray casting methods are selected and compared to its bond strength by conducting bond test and measuring available casting time. As a result, the bond strength and available casting time is considerably depends on spray casting method.