검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 48

        1.
        2024.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The Climate chamber system is an essential facility for aerodynamic performance development of commercial vehicles to investigate air flow field characteristics in different climatic conditions. In particular, the analysis of airflow fields within the chamber system is an essential consideration for optimal design. In this study, the pressure characteristics and velocity uniformity in the test section area were predicted with blower impeller rotational speed using CFD. The velocity uniformity is affected by the distance from the blower nozzle outlet, reaching up to 72.7% at 695 RPM. The pressure differential between 300 RPM and 740 RPM shows an approximate difference of 2651 Pa, with a high-pressure distribution observed along the right side wall of the blower. These results are expected to be used as design data applicable for improving the performance of environmental chamber systems.
        4,000원
        2.
        2024.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Air flow field characteristics in a compact chamber system are indispensable for the efficient development of vehicle aerodynamic performance. In this study, air flow and velocity uniformity in the chamber system were numerically analyzed using the CFD method. Air flows at a uniform velocity from the outlet of the blower, passes fast through the heat exchanger with partial pressure difference, and then moves into the blower inlet. Overall pressure drop through the fan gradually increases with the flow rate. The uniformity varies along the test section, decreasing by 5-10% with distance from the nozzle. These predicted results can be widely used as basic conceptual design data for an efficient vehicle chamber system.
        4,000원
        3.
        2024.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study intends to development of a lap scale 1-ton standard combustion chamber. The manufactured standard combustion chamber analyzes pilot combustion tests and emission standard data of MGO fuel oil. The actual capacity of the standard combustion chamber is about 900L, total weight of 265kg. As a result of the pilot combustion test, the O2 was about 8.01% and the CO2 was about 9.34%. In the case of NOx, it was about 33.50 ppm, and SOx (SO2) was about 0.76ppm. The combustion efficiency was about 72.41%, the exhaust gas temperature was 366.7℃, and the combustion chamber internal temperature was about 448.0℃.
        4,000원
        4.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study aimed to investigate the effect of Liriope platyphylla and organic acids on enteric methane mitigation in goats using an open-circuit simplified respiration chamber system. Methane recovery was evaluated by injecting 3% standard methane gas for 30 min at 3 L/min. The percentage of methane recovery from the four chambers was 99±5.4%. Following the recovery test, an animal experiment was conducted using eight castrated Boer goats (body weight 46.6±7.77 kg) using a 2×2 crossover design. Experimental diets were as follows: 1) Control (CON), commercial concentrate and tall fescue, and 2) Treatment (MIX), concentrate supplemented with L. platyphylla and organic acids and tall fescue. Goats were offered feed at 2% of body weight (dry matter basis) in equal portions twice daily at 8:00 and 15:30. The goats were adapted to the feed and methane chamber for 10 and 3 days, respectively. Methane emission was measured one day per goat using tunable diode laser absorption spectroscopy, and temperature and airflow measurements were used to estimate methane emissions. Dry matter intake (DMI), body weight, and methane emission were measured during each period. Methane production with CON and MIX was 24.48 and 22.68 g/d, respectively, and 26.81 and 24.83 g/kg DMI, respectively. Although the differences were not significant, the use of supplements resulted in a numerical reduction in methane in MIX compared with CON. Collaboration with experts in other areas, including various engineering departments, is imperative to measure methane emissions using a chamber system accurately.
        4,300원
        5.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The number of snowfall and the amount of snowfall are gradually increasing, and due to the characteristics of Seoul, which has a lot of traffic, it is difficult to respond quickly with a snow removal method that relies on snow removal vehicles. Therefore, it is necessary to develop an IoT based eco-friendly snow removal system that can respond to unexpected heavy snow in winter. In this study, the low temperature operation and snow removal performance of the IoT road condition snow removal detector and the snow removal system using CNT and PCM are evaluated in the climatic environment chamber. METHODS : To make artificial snow, it consists of an climatic environment chamber that can simulate a low temperature environment and equipment that can supply compressed air and cold water. Depending on the usage characteristics of the climatic environment chamber, use an air-water type snow maker. In order to make artificial snow, wet temperature, which takes into account the actual air temperature and the amount of moisture in the air, acts as the most important variable and is suitable for making snow, below –1.5 ℃. The lower the water temperature, the easier it is to freeze, so the water source was continuously supplied at 0 ℃ to 4 ℃. One of the two different pipes is connected to the water tank to supply water, and the other pipe is connected to the compressor to supply high-pressure air. Water is dispersed by compressed air in the form of many small droplets. The sprayed microscopic water particles freeze quickly in the low temperature environmental climatic chamber air and naturally fall to the floor, forming snow. Based on the KS C IEC 60068-2-1 cold resistance test standard, an integrated environmental test procedure was prepared to apply to IoT-based snow removal systems and performance evaluation was performed accordingly. The IoT based eco-friendly snow removal system is needed to in winter, so visual check and inspect the operation at the climatic chamber before setting up it to the actual site. In addition, grid type equipment was manufactured for consistent and reliable snow removal performance evaluation under controlled environmental conditions. RESULTS : The IoT-based eco-friendly snow removal system normally carried out the task of acquiring data and images without damaging the appearance or freezing in a low temperature environment. It showed clear snow removal performance in areas where PCM and CNT heating technology were applied to the concrete slab. This experiment shows that normal snow removal tasks can be carried out in low temperature environments in winter. CONCLUSIONS : The integrated environmental test procedures and grid type evaluation equipment are applied to low temperature operation and snow removal performance evaluation of snow removal systems. In the climatic environment chamber, where low temperature environments can be simulated, artificial snow is created regardless of the season to derive quantitative experimental results on snow removal performance. PCM and CNT heating technology showed high snow removal performance. The system is expected to be applied to road site situations to preemptively respond to unexpected heavy snow in winter.
        4,000원
        9.
        2023.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        With rising concerns about pesticide spray drift by aerial application, this study attempt to evaluate aerodynamic property and collection efficiency of spray drift according to the leaf area index (LAI) of crop for preventing undesirable pesticide contamination by the spray-drift tunnel experiment. The collection efficiency of the plant with ‘Low’ LAI was measured at 16.13% at a wind speed of 1 m·s-1. As the wind speed increased to 2 m·s-1, the collection efficiency of plant with the same LAI level increased 1.80 times higher to 29.06%. For the ‘Medium’ level LAI, the collection efficiency was 24.42% and 43.06% at wind speed of 1 m·s-1 and 2 m·s-1, respectively. For the ‘High’ level LAI, it also increased 1.24 times higher as the wind speed increased. The measured results indicated that the collection of spray droplets by leaves were increased with LAI and wind speed. This also implied that dense leaves would have more advantages for preventing the drift of airborne spray droplets. Aerodynamic properties also tended to increase as the LAI increased, and the regression analysis of quadric equation and power law equation showed high explanatory of 0.96-0.99.
        4,000원
        10.
        2023.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper presents a computational fluid dynamics (CFD) analysis to investiagate the effect of expansion chamber on overpressure reduction in protective tunnels subjected to detonation of high explosives. A commercial CFD code, Viper::Blast, was used to model the blast waves in a protective tunnel with a length of 160 m, width of 8.9 m and height of 7.2 m. Blast scenarios and simulation matrix were establihsed in consideration of the design parameters of expansion chamber, including the chamber lengths of 6.1 m to 12.1 m, widths of 10.7 m to 97 m, length to width ratios of 0.0 to 5.0, heights of 8.0 m and 14.9 m, and ratios of chamber to tunnel width of 1.2 to 10.9 m. A charge weight of TNT of 1000 kg was used. The mesh sizes of the numerical model of the protective tunnel were determined based on a mesh convergence study. A parametric study based on the simulation matrix was performed using the proposed CFD tunnel model and the optimized shape of expansion chamber of the considered tunnel was then proposed based on the numerical results. Design recommendations for the use of expansion chamber in protective tunnel under blast loads to reduce the internal overpressures were finally provided.
        4,000원
        11.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper studies the flow characteristics inside the low-temperature carbonization(LTF) including sealing chamber with labyrinth. The flow behavior inside the furnace was analyzed according to different labyrinth shapes. The effects of labyrinth baffle number, and clearance between upper and lower baffles in the sealing chamber were investigated. The large vortex and stagnation region are generated in the chamber when the gap between the baffle and baffle is small. As a result, the gas discharge flow rate can be increased by 29.4% when the flow space of labyrinth is made 75% of the baffle length.
        4,000원
        12.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : High concentrations of particulate matter (PM) are emitted or generated from vehicle emissions in urban roads with dense transient populations. To reduce the effect of PM emission on bus stop users at roadsides, a plan to reduce PM emitted from the roadside must be devised. In this study, an atmospheric environment at a roadside is simulated in a large-scale environment chamber, and a test for reducing PM around the bus stop is conducted by installing a bus stop adapted to a PM reduction system. METHODS : Exhaust gas is injected into the experimental and reference chambers using diesel and gasoline vehicles for roadside airquality simulations. The two vehicles are operated in an idle state without an acceleration operation to emit exhaust gas uniformly, and the initial conditions are achieved by injecting car emissions for approximately 40 min. The initial condition is set to 1 ppm of NOx concentration in the environment chamber. Between the two environment chambers, a bus stop adapted to the PM reduction system is installed in the experimental chamber to conduct a PM reduction experiment pertaining to the air quality around the roadside. The experimental progress is set as the start time of the experiment based on the time at which the initial conditions are achieved; simultaneously, the PM reduction system in the experimental chamber is operated. After the simulation is commenced, the PM concentration, which changes over time, is measured using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) without additional injection of car emissions or pollutants. The HR-ToF-AMS measures the chemical composition of non-refractory PM1.0 (NR-PM1.0) in real time. RESULTS : The NR-PM1.0 compound (organic aerosol (OA), NO3 -, SO4 2-) increases by 160% compared with the simulated initial concentration up to T90min in both environmental chambers; this is speculated to be due to secondary formation. The reference chamber indicates a slight decrease or a steady-state after T90min, whereas the experimental chamber indicates a gradually decrease as the experiment progresses. The bus stop adapted to the PM reduction system reduces the amount of black carbon in the experimental chamber by 37% at 200 min. This implies that the PM emitted from the roadside is filtered via the PM reduction system installed at the bus stop, and cleaner air quality can be provided to passengers. CONCLUSIONS : The PM reduction system evaluated in this study can be detached from and attached to the outdoor billboard of a bus stop. Since it adopts air filtration technology that uses a high-efficiency particulate air filter, it can be maintained and managed easily. In addition, it can provide an atmospheric environment with reduced PM emission to passengers as well as provide a better air-quality condition to passengers waiting for public transportation near roadsides.
        4,000원
        13.
        2021.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, there has been growing interest in harmful substances released from household items such as volatile organic compounds (VOCs) and this has increased people’s environmental awareness. In this study, adhesives and manicures were used as samples of indoor household goods and formaldehyde emission and tested over time under temperature conditions of 15oC, 25oC, 35oC, and 45oC. The small chamber method as the indoor air quality process test method was employed and used to evaluate the concentration of formaldehyde emissions. As a result, formaldehyde emissions gradually decreased over time in both tests using adhesives and manicures. The cumulative emission showed a logarithmic function over time, and the formaldehyde can be released for longer periods of time at lower temperature conditions. The logarithmic value and response time showed linear relationships, and it can be inferred that the formaldehyde was released from the sample through the first order reaction. Furthermore, the relationship between temperature and velocity constants which was determined using the Arenius linear equation showed that the reaction rate of formaldehyde can be estimated by a temperature change.
        4,200원
        14.
        2020.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 이탈리안 라이그라스 원형베일 사일리지 조제에 있어서 원료작물의 수분함량과 베일러 챔버의 압력에 따른 사일리지의 사료가치와 발효품질의 변화를 구명하기 위하여 수행되었다. 수확 후 1일(고수분), 2일(중수분) 및 4일간(저수분) 각각 예건하여 서로 다른 수분함량의 이탈리안 라이그라스를 베일러 챔버 압력이 115, 130 및 145 bar로 설정된 베일러로 원형베일 사일리지를 조제하여 60일간 저장하였다. 베일 사일리지의 무게는 고수분 처리구에서 높게 나타났고, 건물중은 저수분 처리구가 유의적으로 높게 나타났다. 베일러 압력에 따른 사일리지의 무게는 유의적인 차이는 없었으나, 압력이 증가할수록 건물중은 증가하였다. 수분함량과 베일러 압력에 따른 사일리지의 NDF, ADF, CP 및 CF는 처리 간에 유의적인 차이가 없었으며, RFV (relative feed value)는 고수분 저압력 처리구에서 가장 높게 나타났다. Lactic acid는 고수분-고압력 처리구가 가장 높았으며, 저수분-중압력 처리구에서 가장 낮게 나타내었다. Butyric acid는 베일러 압력에 따른 유의적인 차이는 없었으나, 예건기간이 길어질수록 감소하였다. 사일리지 pH는 고수분 처리구가 중수분과 저수분 처리구에 비해 낮게 나타났으나, 베일러 압력에 따른 차이는 없었다. 이러한 결과는 이탈리안 라이그라스 원형베일 사일리지 조제 시 조사료의 수분함량과 베일러 챔버의 압력이 사일리지의 발효품질에 영향을 미치는 중요한 요인임을 나타내는 것이다.
        4,000원
        15.
        2020.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : A pilot experimental study on the formation of fine particulate matter through photochemical reactions using precursor gas species (volatile organic compounds (VOCs), NH3, SO2, and NOx) was conducted to evaluate the large-scale environment chamber for investigating the pathway of aerosol formation and the subsequent assessment techniques used for reducing fine particulate matter. Two small-scale environment chambers (one experimental group and one control group), each with a width, depth, and height of 3 m, 2 m, and 2.3 m, respectively, were constructed using ethylene tetrafluoroethylene (ETFE) films. METHODS : The initial conditions of the fine particles and precursor gases (NOx and VOCs) for the small-scale environment chamber were set up by injecting diesel vehicle exhaust. NH3 and H2O2 were added to the small-scale environment chamber for the photochemical reaction to form organic and inorganic aerosols. The gas phase of the VOCs and the chemical compositions of aerosols were investigated using a proton transfer reaction time-of-flight mass spectrometer and the aerodyne high-resolution time-of-flight aerosol mass spectrometer at 1 and 10 s time resolutions, respectively. Gas phases of NO and NO2 were measured using Serinus 40 NOx at a 20 s time resolution. RESULTS : The small-scale environment chambers built using ETFE films were proved to supply sufficient natural sunlight for the photochemical reaction in the environment chambers at an average of approximately 89% natural sunlight transmission at 300–1000 nm. When the intermediates of NH3 and H2O2 for the atmospheric chemical reaction were injected for the initial condition of the small-scale environment chamber, nitrate and ammonium in the experimental group increased to 4747% and 1837%, respectively, compared to the initial concentrations (5.4 μg/m3 of nitrate and 5.2 μg/m3 of ammonium), indicating the formation of secondary inorganic aerosols of ammonium nitrate (NH4NO3). This implies that it is necessary to inject intermediates (NH3 and H2O2) for the formation of fine particulate matter when simulating the atmospheric photochemical reaction for assessing the environment chamber. CONCLUSIONS : This study has shown that small-scale environment chambers can simulate the atmospheric photochemical reaction for the reduction of fine particulate matter and the formation of the aerosol pathway. The results of this study can be applied to prevent time and economic losses that may be incurred in a full-scale environment chamber.
        4,200원
        16.
        2020.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        아자리아 챔버레인 실종 사건은 미디어 재판의 대표적인 사례이다. 미디어 담론의 중점을 사건 연루자들에 둔 기사들은 부정적 암시를 내포하는 은유와 문장구조를 통해 편견을 조장하였다. 미디어가 선동한 여론에 의해 챔버레인 가족은 용의자로 몰렸고 그들의 종교 또한 광신적 집단이라는 부당한 비난을 받았다. 결국 아자리아의 부모는 유죄를 선고 받았으나, 증거가 불충분했고 재판 과정과 선고방식이 정당하지 않았다는 근거로 대항 공론 운동이 전개되었다. 챔 버레인 부부의 무죄 판결 이후에도 미디어 재판에 맞서는 시도는 계속되고 있다. 이 사건의 전모는 대중이 넘쳐나는 선정적 뉴스로부터 진실을 구별할 수 있게 하는 교육의 중요성을 시사한다. 종교적, 사회적 편견의 피해자들을 지지하 기 위하여 시민의식을 고양시키고 대항 공론의 장을 정착시키는 일 또한 필요 할 것이다.
        6,000원
        17.
        2020.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        메탄가스는 주요 온실가스 중 하나로 반추동물의 장내발효를 통해 발생하며, 이러한 경로의 메탄가스는 대한민국 축산부문 총 온실가스 발생량의 40% 이상을 차지한다. 이런 이유로 많은 연구자들은 반추동물에서 발생하는 메탄생성량을 줄이기 위한 시도를 계속해 왔다. 본 연구는 반추동물의 메탄발생량을 측정하기 위해 호흡대사챔버를 개발하고 호흡대사챔버의 정확성을 검증하기 위해 실시하였다. 호흡대사챔버는 25.4 m3 크기로 스테인리 스 플레이트로 내부를 완전히 밀폐하였다. 직경 Φ100의 공기 유입관과 배출관을 설치하였고, 공기 배출관에 에어모터를 설치하여 내부공기를 제거함과 동시에 유입관을 통해 배출된 만큼의 공기가 외부에서 유입되도록 하였다. 챔버 내 메탄가스 회수기능을 검증하기 위해 메탄표준가스 5L를 각 챔버에 주입하여 균일하게 확산시킨 후, 챔버 내부의 공기를 900 L/min의 속도로 제거하였다. 제거된 공기의 메탄가스 농도를 연속적으로 측정하여 주입된 메탄가스와 비교함으로써 회수율을 평가하였다. 챔버 내 표준가스는 평균 100분에 완전히 제거되었으며, 메탄가스의 회수율은 평균 109 ± 6.7%로 측정되었다. 호흡대사챔버의 실제 이용성을 평가하기 위해, 평균체중 581.9 ± 33.8 kg 의 한우 거세우 4두에게 비육후기 배합사료 9 kg과 볏짚 1 kg을 급여하며 메탄발생량을 측정하였다. 한우의 장내발효에 의한 메탄발생량은 평균 236.4 ± 105.44 L/day로 측정되었다. 본 연구에서 개발·검증한 호흡대사챔버는 국내 한우의 장내발효 메탄가스발생량 측정 시험에 적용 가능할 것이다.
        4,000원
        18.
        2020.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        군락 광합성 모델의 도출을 위하여 생육 챔버가 필요하며, 이를 위한 광합성의 효율적인 측정 방법이 필요하다. 본 연구의 목적은 내부 환경 제어가 가능한 생육 챔버를 이용하여 광도 및 이산화탄소 농도 변수를 갖는 로메인 상추(Lactuca sativa L.)의 군락 광합성 곡선을 도출하는 방법을 확립하는 것이다. 실험에 사용한 상추는 식물공장 모듈에서 재배되었으며, 군락 광합성을 측정하기 위하여 아크릴로 제작된 생육 챔버(1.0x0.8x0.5m)를 이용하였다. 첫 번째로, 다음의 두 방법을 적용하여 측정된 군락 광합성 속도를 통해 각 방법의 시정수를 계산하여 비교하였다. 즉, 1) CO2 농도를 고정(1,000μmol·mol-1) 하고 광도를 변화(340, 270, 200, and 130μmol·m-2·s-1) 시키거나, 2) 광도를 고정(200μmol·m-2·s-1)하고 CO2 농도를 변화(600, 1,000, 1,400, and 1,800μmol·mol-1) 시켰다. 두 번째로, 1)과 2)의 방식을 적용하여 군락 광합성을 측정했을 때, 특정 광도(200μmol·m-2·s-1)와 특정 CO2 농도(1,000μmol·mol-1)에서 측정된 군락 광합성 속도 값을 비교하였다. 실험 결과 CO2 농도를 변화시키는 방식의 시정수는 광도를 변화시키는 방식에 비해 3.2배 큰 값을 나타내었다. 광도를 변화시키며 측정할 때 군락 광합성 속도는 1분 이내에 안정되었고, CO2 농도를 변화시킬 경우에는 6분 이상의 시간이 소요되었다. 따라서 광도를 변화시키는 측정 방식이 생육 챔버를 이용하여 작물의 군락 광합성 속도를 측정할 때 적합한 방식임을 확인하였다.
        4,000원
        19.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this experiment, the engine (i30 FD) was fabricated and installed in front of the intake manifold of the gasoline engine of the 2010 1,600cc MPI(Multi Point Injection) 4-cylinder 16-valve DOHC(Double Over Head Camshaft) electronic control fuel injection system, and the plenum chamber was 150cc, 300cc, 4. The engine rotation speed was increased from 1000rpm to 3000rpm by 500rpm, and the pressure change and engine volume efficiency change of the air intake manifold runner were analyzed. In this study, the volume of air flowing into the cylinder was maximized through the stabilization of pressure vibration in the intake manifold runner part due to the engine operation condition and the volume change of the intake manifold plenum chamber, and the uniform distribution rate of the intake air was confirmed by minimizing the interference between the cylinders. It has in the purpose to analyze the flow characteristic at the intake manifold inside. It can apply to obtain the optimal design factor.
        4,000원
        20.
        2019.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        It is well-known that the primary role of a vehicle exhaust system is to reduce the exhaust emissions and noise caused by a running vehicle. However, as vehicle exhaust systems are being evaluated and improved in various ways to satisfy consumer needs, technologies for reducing noise and vibration are significantly being developed. The biggest challenge in designing an exhaust system is generating the optimal back pressure and flow velocity for a running vehicle, thereby maximizing the performance, while simultaneously reducing the noise caused by the exhaust emissions. In this study, we designed the junction chamber shapes of various exhaust systems, which are applicable to V6 and above engines, and conducted a CFD analysis of the exhaust gas flowing through an exhaust pipe. In addition, we precisely measured the noise and vibration caused by a vehicle and analyzed the correlation.
        4,000원
        1 2 3