공항은 다른 어떤 기반시설보다 복잡하고 사고시 매우 치명적이기 때문에 공항 계획/설계시 운영적인 측면을 고려한 면밀한 검토가 필요하다. 공항 건설이후 실제 항공기가 어떻게 운영되는지 시뮬레이션하고 문제점을 사전에 예측함으로써 항공기 운항 안전성을 확보할 수 있기 때문이다. 최근 도로/공항의 경우 디지털 트윈 기반의 시뮬레이션 프로그램으로 설계, 분석하는 사례가 많다. 이러한 기조에 맞춰 공항에서도 시뮬레이션 프로그램인 AviPLAN을 활용하여 에어사이드 배치 설계를 수행하고 있으며, 인천국제공항공사와 한국공항공사에서도 활용하고 있다. 본 연구에서는 기존 국내외 공항에 AviPLAN 프로그램을 활용하여 최적화 설계를 수행하였고 산출된 포장물량 절감사례를 바탕으로 에어사이드 시설 배치가 얼마나 중요한지 확인하고자 하였다.
Recent advances in computer technology have made it possible to solve numerous challenges but require faster hardware development. However, the size of the classical computer has reached its physical limit, and researchers' interest in quantum computers is growing, and it is being used in various engineering fields. However, research using quantum computing in structural engineering is very insufficient. Therefore, in this paper, the characteristics of qubits, the minimum unit of quantum information processing, were grafted with the crow search algorithm to propose QCSA (quantum crow search algorithm) and compare the convergence performance according to parameter changes. In addition, by performing the optimal design of the example truss structure, it was confirmed that quantum computing can be used in the architectural field.
The design variables and material properties as well as the external loads concerned with structural engineering are used to be deterministic in optimization process. These values, however, have variability from expected performance. Therefore, deterministic optimum designs that are obtained without taking these uncertainty into account could lead to unreliable designs, which necessitates the Reliability-Based Design Optimization(RBDO). RBDO involves an evaluation of probabilistic constraints which constitutes another optimization procedure. So, an expensive computational cost is required. Therefore, how to decrease the computational cost has been an important challenge in the RBDO research field. Approximation models, response surface model and Kriging model, are employed to improve an efficiency of the RBDO.
본 논문에서는 신뢰성 기반 최적설계(RBDO)에서 성능함수의 비선형성을 고려한 효율적인 차원감소법(DRM)을 제안한다. 차원감 소법은 적분직교점과 가중치를 사용하여 1차 신뢰도법(FORM) 보다 더 정확하게 신뢰도를 평가하는 반면 성능함수를 추가로 해석해 야하기 때문에 적분직교점의 개수가 증가하면 효율성이 저해된다. 본 논문에서는 신뢰성 기반 최적설계에서 성능함수의 비선형도를 평가하고, 비선형도에 따라 적분직교점의 수를 결정하는 기준을 제안한다. 이를 통해 신뢰성 기반 최적설계가 진행될 때 반복마다 적 분직교점의 수를 조절하여 차원감소법의 정확도는 유지하면서 계산의 효율성은 개선하는 방안을 제안한다. 성능함수의 비선형도 평 가는 최대가능목표점(MPTP) 탐색에 사용한 벡터 사이의 각도를 통해 이루어지며, 수치 테스트를 통해 비선형도에 따른 적절한 적분 직교점의 수를 도출하였다. 2차원 수치예제를 통해 개발된 방법이 차원감소법이나 몬테카를로 시뮬레이션(MCS)의 정확도는 유지하 면서 효율성이 향상된다는 것을 확인하였다.
In this study, we propose an optimal design method by applying the Prefabricated Buckling Restrained Brace (PF-BRB) to structures with asymmetrically rigidity plan. As a result of the PF-BRB optimal design of a structure with an asymmetrically rigidity plan, it can be seen that the reduction effect of dynamic response is greater in the case of arrangement considering the asymmetric distribution of stiffness (Asym) than in the case of arrangement in the form of a symmetric distribution (Sym), especially It was confirmed that at an eccentricity rate of 20%, the total amount of reinforced PF-BRBs was also small. As a result of analyzing the dynamic response characteristics according to the change in eccentricity of the asymmetrically rigidity plan, the distribution of the reinforced PF-BRB showed that the larger the eccentricity, the greater the amount of damper distribution around the eccentric position. Additionally, when comparing the analysis models with an eccentricity rate of 20% and an eccentricity rate of 12%, the response reduction ratio of the 20% eccentricity rate was found to be large.
본 논문에서는 다이나믹크리깅 대리모델 기반 자동차 브레이크 패드 마모량 측정센서 브라켓의 설계최적화를 소개한다. 브레이크 작동시 마찰재 바닥의 온도가 600°C 이상으로 상승하고, 이 열이 전달되어 센서의 기능을 상실시킨다. 따라서 열전달을 최소화하는 브라켓 형상의 설계최적화는 필수적이다. 최적화에 소요되는 계산비용을 절감하기 위해 다이나믹크리깅 대리모델로 열전달 시뮬레 이션을 대체하였다. 다이나믹크리깅은 최적의 상관함수와 기저함수를 선정하였으며, 정확한 대리모델을 도출하였다. 최적화 결과 센 서위치의 온도가 초기모델에 비해 7.57% 감소하였으며, 이를 열전달 시뮬레이션으로 다시 한번 확인하여 대리모델 기반 최적설계가 유의미함을 검증하였다.
This study numerically compares optimum solutions generated by element- and node-wise topology optimization designs for free vibration structures, where element-and node-wise denote the use of element and nodal densities as design parameters, respectively. For static problems optimal solution comparisons of the two types for topology optimization designs have already been introduced by the author and many other researchers, and the static structural design is very common. In dynamic topology optimization problems the objective is in general related to maximum Eigenfrequency optimization subject to a given material limit since structures with a high fundamental frequency tend to be reasonable stiff for static loads. Numerical applications topologically maximizing the first natural Eigenfrequency verify the difference of solutions between element-and node-wise topology optimum designs.
본 논문에서는 컨테이너선의 선형 최적 설계 자동화와 관련하여 연구한 내용과 결과를 정리하였다. 컨테이너선은 일반적으로 프루우드 수 0.26 근처에서 운항하는 선박으로 이 속도에서 운항하는 선박 전용 선형 최적 설계 자동화를 구현하기 위하여 최적화 알고리 즘, 선형 변경 알고리즘, 선박 성능 예측 알고리즘, 자동화 알고리즘 그리고 반복적 계산 기법을 적용하여 컨테이너선의 선형 최적 설계 자동화가 가능한 수치해석 컴퓨터 프로그램을 개발하였으며, HOTCONTAINER라고 명명하였다. 본 연구에서는 선형 최적 설계를 위한 설 계 변수의 적절한 선정을 위하여 민감도 분석 알고리즘을 개발하여 적용하였다. 개발된 선형 최적 설계 자동화 알고리즘의 신뢰성과 실 선 적용성을 파악하기 위하여 세계적으로 다양한 연구가 진행된 컨테이너 선박인 KCS 선박을 대상 선박으로 하여 선형 최적 설계 자동 화 수치해석을 수행하여 그 결과물로써 최적 선박을 도출하고, 대상 선박과 최적 선박의 조파저항과 파계 그리고 파고를 비교하였다. 결 론적으로 최적 선박이 대상 선박과 비교하여 조파저항이 47.63% 감소한 것을 볼 수 있었으며, 배수량과 접수 표면적은 각각 0.50%, 0.39% 감소한 것을 볼 수 있었다.
Engineering design involves making numerous decisions as the design process. These decisions can be broadly categorized into selection decisions and compromise decisions. The outcomes of these decisions heavily depend on the designer's intentions, highlighting the need to systematically and accurately incorporate the designer's intentions. The Analytic Hierarchy Process (AHP) is a design technique that systematically reflects the designer's intentions by hierarchically analyzing and evaluating ambiguous decision problems. Therefore, in this study, effective optimal structure designs that maximally reflect the designer's intentions were confirmed by introducing AHP (Analytic Hierarchy Process) and Neural Network into the foundational decision-making process of engineering design.
OWEC(Overtopping Wave Energy Converter)는 월파된 파도를 이용한 파력발전시스템이라한다. OWEC의 성능 및 안전성은 파고, 주기 등 파도의 특성에 의해 영향을 받는다. 따라서 해역 특성에 따른 OWEC의 최적 형상과 구조안전성에 관한 연구가 필요하다. 본 연구 에서는 울릉읍 연안 해양 환경 데이터를 이용하였으며, SPH(Smoothed Particle Hydrodynamics) 입자법 해석을 통해 기존 케이슨 하부 구조에 변화를 준 모델 4개를 비교하여 월파 효율을 분석하였다. 그 결과, 하부 구조의 변경 및 경량화가 가능함을 확인하였다. 최적화 해석을 통 해 설계 하중에 내하력을 가지는 하부 구조인 새로운 트러스형 구조를 제안하였다. 이후 부재 직경 및 두께를 설계변수로 하는 사례 연구 를 통해 허용응력조건 하에서 구조 안전성의 확보를 확인하였다. 주기적인 파랑 하중을 받기 때문에 제안하는 구조의 고유 진동수와 해 당 해역의 파주기를 비교하였으며, 1년 재현 주기의 파랑을 하중으로 한 조화응답해석을 수행하였다. 제안하는 하부 구조는 동일 가진력 에서 기존 설계 대비 응답의 크기가 감소하였으며, 기존 대비 32% 이상의 중량 절감을 수행하였다.
본 연구에서는 철근콘크리트 모멘트골조의 보-힌지 붕괴 기구를 유도하기 위한 유전자알고리즘 기반의 최적내진설계기법을 제시 한다. 제안하는 기법은 두 가지의 목적함수을 사용한다. 첫 번째는 구조물의 비용을 최소화하는 것이고, 두 번째는 구조물의 에너지소 산능력을 최대화하는 것이다. 제약조건은 기둥과 보의 강도조건, 기둥-보 휨강도비 최소 조건, 기둥의 소성힌지 발생 방지조건 등이 사용된다. 부재의 강도 평가를 위해 선형정적해석이 수행되고, 에너지소산능력과 소성힌지 발생여부를 평가하기 위해 비선형정적해 석이 수행된다. 제안하는 기법은 4층 예제 구조물에 적용되었으며, 보-힌지 붕괴 기구를 유도하는 설계안이 얻어지는 것을 확인하였 다. 획득된 설계안의 기둥-보 휨강도비를 분석한 결과, 그 값은 기존 내진 기준에서 제시하는 값보다 큰 것으로 나타났다. 보-힌지 붕괴 모드를 유도하기 위해서는 보다 더 강화된 전략이 필요하다.
본 연구에서는 철근콘크리트 모멘트골조의 보-힌지 붕괴 기구를 유도하기 위한 유전자알고리즘 기반의 최적내진설계기법을 제시 한다. 제안하는 기법은 두 가지의 목적함수을 사용한다. 첫 번째는 구조물의 비용을 최소화하는 것이고, 두 번째는 구조물의 에너지소 산능력을 최대화하는 것이다. 제약조건은 기둥과 보의 강도조건, 기둥-보 휨강도비 최소 조건, 기둥의 소성힌지 발생 방지조건 등이 사용된다. 부재의 강도 평가를 위해 선형정적해석이 수행되고, 에너지소산능력과 소성힌지 발생여부를 평가하기 위해 비선형정적해 석이 수행된다. 제안하는 기법은 4층 예제 구조물에 적용되었으며, 보-힌지 붕괴 기구를 유도하는 설계안이 얻어지는 것을 확인하였 다. 획득된 설계안의 기둥-보 휨강도비를 분석한 결과, 그 값은 기존 내진 기준에서 제시하는 값보다 큰 것으로 나타났다. 보-힌지 붕괴 모드를 유도하기 위해서는 보다 더 강화된 전략이 필요하다.
본 논문에서는 위상최적설계를 위한 입자-구조 충돌 모델을 제시한다. 위상최적설계를 위해서는 민감도 분석이 선행되어야 하며, 민감도 분석이 가능한 새로운 모델이 필요하다. 본 논문에서는 위상최적설계를 위한 민감도 분석을 수행하기 위한 입자-구조 충돌 모 델을 제시한다. 이후 이 모델을 이용하여 위상최적설계를 위한 민감도 분석을 수행한다. 제안한 모델의 정확도를 평가하기 위해 먼저 단순화된 1차원 충돌 문제에 적용한다. 이후, 이 모델을 이용하여 위상 최적화를 통해 입자의 최종 위치를 최적화하여 위상 최적화에 대한 이 모델의 적용 가능성을 확인한다. 이러한 결과는 위상 최적화에서 입자-구조 충돌을 고려하는 것이 가능하다는 것을 보여준다.
This study addresses the optimal design methodology for switching between active electronically scanned array (AESA) radar operating modes to easily select the necessary information to reduce pilots' cognitive load and physical workload in situations where diverse and complex information is continuously provided. This study presents a procedure for defining a hidden Markov chain model (HMM) for modeling operating mode changes based on time series data on the operating modes of the AESA radar used by pilots while performing mission scenarios with inherent uncertainty. Furthermore, based on a transition probability matrix (TPM) of the HMM, this study presents a mathematical programming model for proposing the optimal structural design of AESA radar operating modes considering the manipulation method of a hands on throttle-and-stick (HOTAS). Fighter pilots select and activate the menu key for an AESA radar operation mode by manipulating the HOTAS’s rotary and toggle controllers. Therefore, this study presents an optimization problem to propose the optimal structural design of the menu keys so that the pilot can easily change the menu keys to suit the operational environment. K
Taguchi method is one of the most popular approaches for design optimization such that performance characteristics become robust to uncontrollable noise variables. However, most previous Taguchi method applications have addressed a single-characteristic problem. Problems with multiple characteristics are more common in practice. The multi-criteria decision making(MCDM) problem is to select the optimal one among multiple alternatives by integrating a number of criteria that may conflict with each other. Representative MCDM methods include TOPSIS(Technique for Order of Preference by Similarity to Ideal Solution), GRA(Grey Relational Analysis), PCA(Principal Component Analysis), fuzzy logic system, and so on. Therefore, numerous approaches have been conducted to deal with the multi-characteristic design problem by combining original Taguchi method and MCDM methods. In the MCDM problem, multiple criteria generally have different measurement units, which means that there may be a large difference in the physical value of the criteria and ultimately makes it difficult to integrate the measurements for the criteria. Therefore, the normalization technique is usually utilized to convert different units of criteria into one identical unit. There are four normalization techniques commonly used in MCDM problems, including vector normalization, linear scale transformation( max-min, max, or sum). However, the normalization techniques have several shortcomings and do not adequately incorporate the practical matters. For example, if certain alternative has maximum value of data for certain criterion, this alternative is considered as the solution in original process. However, if the maximum value of data does not satisfy the required degree of fulfillment of designer or customer, the alternative may not be considered as the solution. To solve this problem, this paper employs the desirability function that has been proposed in our previous research. The desirability function uses upper limit and lower limit in normalization process. The threshold points for establishing upper or lower limits let us know what degree of fulfillment of designer or customer is. This paper proposes a new design optimization technique for multi-characteristic design problem by integrating the Taguchi method and our desirability functions. Finally, the proposed technique is able to obtain the optimal solution that is robust to multi-characteristic performances.
Reinforcement learning (RL) is widely applied to various engineering fields. Especially, RL has shown successful performance for control problems, such as vehicles, robotics, and active structural control system. However, little research on application of RL to optimal structural design has conducted to date. In this study, the possibility of application of RL to structural design of reinforced concrete (RC) beam was investigated. The example of RC beam structural design problem introduced in previous study was used for comparative study. Deep q-network (DQN) is a famous RL algorithm presenting good performance in the discrete action space and thus it was used in this study. The action of DQN agent is required to represent design variables of RC beam. However, the number of design variables of RC beam is too many to represent by the action of conventional DQN. To solve this problem, multi-agent DQN was used in this study. For more effective reinforcement learning process, DDQN (Double Q-Learning) that is an advanced version of a conventional DQN was employed. The multi-agent of DDQN was trained for optimal structural design of RC beam to satisfy American Concrete Institute (318) without any hand-labeled dataset. Five agents of DDQN provides actions for beam with, beam depth, main rebar size, number of main rebar, and shear stirrup size, respectively. Five agents of DDQN were trained for 10,000 episodes and the performance of the multi-agent of DDQN was evaluated with 100 test design cases. This study shows that the multi-agent DDQN algorithm can provide successfully structural design results of RC beam.