검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 75

        1.
        2025.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        최근 지구온난화로 인한 피해가 심각해짐에 따라 화석연료 사용을 줄이고자 친환경 수소 에너지의 활용이 증가하고 있다. 이에 따라 수소의 저장 및 운송을 위한 수소 저장 용기의 수요가 확대되고 있으나, 현재 널리 사용되고 있는 강재 기반 저장 용기는 부식과 같은 내구성 저하 현상에 취약하다. 따라서 선행 연구는 지지부 부식에 따른 내진 성능 저하 문제를 해결하기 위해 부식 저항성 이 뛰어난 CFRP를 지지부 기둥을 적용하여 설계 하중에서 적용성을 검토하였다. 이때 본 연구는 CFRP의 강도-중량비가 높음을 고려 하여 기존 강재 구조물 지지부 ㄱ 단면 대비 높은 강성을 가진 H 단면과 ㅁ 단면을 지지부 기둥에 적용하여 연구를 수행하였다. 이때 실제와 가까운 해석 결과를 도출하기 위해 고유진동수 추출해석을 진행하여 감쇠 계수를 적용 시켰고, AC 156 인공 지진을 설계 하중 으로 적용한 결과, ㅁ 단면을 적용한 강재 기둥의 접합부 응력은 222.34 MPa로 기존 ㄱ 형강 대비 78.93%로 설계 하중에 만족함을 보였다. ㅁ 단면 적용 CFRP 기둥은 파손 지수(DI)를 통해 평가하였고, 이때 최대 DI는 수지 인장에서 발생하였으며, 그 값은 0.708로 파괴 기준 대비 29.2% 낮아 설계 하중에 만족함을 보였다. 또한, 기초 슬래브에서 쪼갬 인장 응력과 휨 인장 응력을 통한 평가를 진행 하였고, 현장 실험 결과와 마찬가지로 설계 하중에 휨 인장 파괴가 발생하는 것으로 확인하였다. 하지만 파단 시점은 CFRP에서 1.54배 오래 설계 하중에 견디는 것을 확인하여, 그 적용성을 확인하였다. 결론적으로 지진의 발생 빈도가 높아짐에 따라 수소 저장 용기의 안전성 확보가 시급하다. 따라서 기존 강재 대상 구조물의 부식으로 인한 강성 저하 문제를 해결하기 위해, 높은 내구성 및 부식 저항성 재료의 적용은 필수적이다. 동시에 기초 슬래브의 안전성 확보에 대한 연구가 추가적으로 수행되어야 한다.
        4,000원
        2.
        2025.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Water-soluble substances like hydrogen fluoride, generated in semiconductor manufacturing, pose serious health and environmental risks, underscoring the need for effective capture devices. Vertical liquid capture devices help by aggregating and discharging hazardous substances with water, but their design can lead to backflow during abnormal operations, causing unintended releases and impacting efficiency and safety. This study seeks to improve a vertical liquid collection device’s containment performance by optimizing its geometry. The vertical wall was rotated at various angles and directions, and turbulent kinetic energy and streamline distribution were analyzed to assess vortex formation and flow characteristics. These structural modifications identify optimal conditions to control hazardous substance migration, offering insights for future pollutant removal device designs.
        4,200원
        3.
        2024.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the development of a digital multi-process welding machine, we aimed to analyze the heat dissipation effects resulting from changes in the transformer's shape. Two installation configurations for the transformer, vertical and horizontal, were proposed. Thermal-flow analysis was conducted for the welding machine, taking into account variations in spacing between each proposed configuration. The results indicated that the shape and spacing of the components did not significantly alter the airflow around the reactor coil, which is the main heat-generating component of the machine. When comparing the heat dissipation effects across models with different transformer spacings, it was observed that models with narrower spacing exhibited improved heat dissipation, while the vertical configuration demonstrated a slightly higher heat dissipation effect overall. Transient analysis revealed the irregularities in internal flow and the resulting scattered temperature distribution over time within the welding machine.
        4,000원
        4.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Environmental pollution has led to global warming, which threatens human life. In response, hydrogen is gaining attention as a next-generation energy source that does not emit carbon. Due to its explosive nature, special care must be taken in the safe storage and transportation of hydrogen. Among various storage methods, liquefied storage, which can reduce its volume to 1/800, is considered efficient. However, since its boiling point reaches -253°C, the design of an insulation system is essential. For the design of insulation systems applied to large containers, a membrane-type design is required, which necessitates the use of cryogenic adhesives. To evaluate whether the cryogenic adhesive is properly implemented, assessments such as tensile and shear tests are necessary. This study presents a methodology for shear evaluation. Conventional methods for shear evaluation of adhesives result in slippage, preventing proper assessment. Therefore, a method involving drilling holes in the gripper and pulling from the holes must be applied. Optimal design concerning the size and location of the holes is required, and this study derives optimal values based on finite element analysis. By conducting experiments based on the results of this study, it is expected that the risk of gripper damage will be minimized, allowing for accurate evaluation of the adhesive’s performance.
        4,000원
        5.
        2024.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문에서는 무도상 철도판형교에 열차하중이 재하되었을 때 변위를 최소화시키는 하부 수평브레이싱의 보강 형상 및 설치 위치를 검토하였다. 우선 거더와 수평 브레이싱으로 연결된 2거더 구조계의 전체 횡좌굴모멘트에 영향을 주는 요소를 검토하였다. 다음 으로는 무도상 철도판형교의 하부를 설치 위치를 달리하여 수평브레이싱으로 보강하였다. 보강된 무도상 철도판형교에 열차하중 및 거 더의 중심과 열차하중의 재하위치간의 편심거리(e)에 따라 발생하는 축방향의 비틀림모멘트를 고려하여 구조해석을 수행하였다. 보강모 델별로 지간 중앙에서의 단면의 중심에서 발생하는 변위를 검토하여 변위를 최소화시키는 모델을 선정하였다. 본 연구를 통하여 무도상 철도판형교에 열차하중 재하시 변위를 최소화시키는 하부 수평브레이싱의 보강 형상 및 설치 위치를 제안하였다.
        4,000원
        6.
        2024.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study numerically compares optimum solutions generated by element- and node-wise topology optimization designs for free vibration structures, where element-and node-wise denote the use of element and nodal densities as design parameters, respectively. For static problems optimal solution comparisons of the two types for topology optimization designs have already been introduced by the author and many other researchers, and the static structural design is very common. In dynamic topology optimization problems the objective is in general related to maximum Eigenfrequency optimization subject to a given material limit since structures with a high fundamental frequency tend to be reasonable stiff for static loads. Numerical applications topologically maximizing the first natural Eigenfrequency verify the difference of solutions between element-and node-wise topology optimum designs.
        4,000원
        7.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The automotive industry continuously strives to enhance safety for both drivers and passengers through technological advancements. Car side impacts have the potential to significant risks to passengers, So the automotive industry has proposed various technological solutions. As part of these efforts, the development of side impact beams, which are affixed to the inner frame of vehicle side doors to absorb and dissipate collision energy, has been a safety enhancement. Conventional side impact beams are manufactured using hot-rolled steel sheets and have a pipe-like configuration. However, these impact beams are fixed to the vehicle's chassis, which directly transfers the energy generated during a collision to the chassis frame. This paper aims to address this issue by proposing the development and optimization of vehicle door impact beams using a dual-beam structure and fastening method, utilizing shear bolts. Moreover, the focus is on optimizing the cross-sectional shape of the dual-beam impact structure. The evaluation criterion for optimization is based on the second moment of area of the cross-section. To validate these improvements, Static experiments were conducted, comparing the proposed dual-beam structure with the traditional impact beam. This research is expected to serve as a guideline for enhancing vehicle safety through design directions and validation methods.
        4,000원
        8.
        2023.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this work, we deal with the feasibility of structural topology optimization for beam designs using retrofits that optimally allocates the reinforcement to the web under the condition that designers set bolt regions for H-beams of different dimensions. Mean compliance or minimal strain energy is considered for the optimization. Volume fraction is given to the design space to assign appropriate steel material quantities. The purpose of this study is to evaluate optimal shapes of stiffeners with the maximum rigidity that improves the axial and shear performance of the H-beam and to satisfy a given safety design standard of H-beam and stiffeners in case arbitrary load effect and resistances. Finally, the effectiveness of stiffness-based topology optimization on stiffeners is verified with several practical applicable examples.
        4,000원
        9.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study analyzed the duct characteristics of hubless rim-driven propeller (RDP) used in underwater robots. In the previous study, flow visualization experiments were performed with an advancing ratio of 0.2 to 1. The vortex at the front of the duct increased in strength while maintaining its size as the advancing ratio decreased. Therefore, it is necessary to study the optimization of the duct shape. Conventional propeller thrusters use acceleration/deceleration ducts to increase their efficiency. However, unlike conventional propellers, it is impossible to apply to airfoil acceleration/deceleration ducts due to the RDP structure. In this study, duct wake flow characteristics, thrust force, and efficiency according to the duct shape of RDP were analyzed using numerical analysis techniques. Duct design is limited and six duct shapes were designed. As a result, an optimized duct shape was designed considering duct wake flow characteristics, thrust force, and efficiency. The shape that the outlet width of the RDP was kept constant until the end of the duct showed higher thrust force and efficiency.
        4,000원
        10.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, a method of reducing the weight of vehicle wheels through topology optimization by finite element method is proposed. Recently, various environmental pollution caused by the operation of vehicles is gradually increasing, and this has a great correlation with the fuel efficiency of the vehicle. Therefore, it is required to reduce the weight of the vehicle to increase fuel efficiency. Among them, the vehicle's wheels are a key part of vehicle acceleration and braking, and passenger safety. Because the shape of the wheels is different, various effects such as reduced fuel economy and reduced airpower occur as well as aesthetic factors. The stiffness of the wheels plays an important role in transmitting the vehicle's power to the tires and braking. In this study, to reduce weight while satisfying the stiffness value, we propose to use topology optimization to design an arbitrary shape according to the number of spokes on the wheel.
        4,000원
        11.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문에서는 구조물의 좌굴 온도와 좌굴 형상을 제어하는 새로운 크기 최적화 방법에 대해서 소개한다. 구조적 안정성 관점에서 구조물의 좌굴 온도와 좌굴 형상을 예측하는 것은 중요한 주제 중 하나이다. 이를 공학적인 직관을 통해 예측하고 최적화된 구조 설계 를 하는 것은 너무나 어려운 과제이다. 이러한 한계점을 해결하기 위해 본 연구에서는 유한요소 시뮬레이션과 치수 최적 설계 방식의 조합을 제안한다. 구조물의 좌굴 온도와 좌굴 형상이 구조물의 두께에 영향을 받는다는 생각에서 착안해 설계 변수를 구조물의 노드 의 두께 값으로 설정했다. 좌굴 온도 값과 좌굴 형상을 목적 함수로 정해진 부피 값을 제약 조건으로 두었다. 치수 최적 설계를 통해 원 하는 좌굴 온도와 좌굴 형상을 유도하기 위한 최적의 두께 분포를 결정할 수 있다. 제안된 치수 최적 설계의 타당성은 본 논문의 다양 한 직사각형 복합 구조물 예제들을 사용해서 검증하였다.
        4,000원
        12.
        2021.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Weight-based exercise equipment is unreasonable because of its large weight or volume and has limitations in use at home. On top of that, it is not easy to control the weight of domestic muscular exercise devices such as dumbbells and latex bands. This study proposes a new type of exercise equipment that can be used at home by modifying the exercise equipment used in fitness centers. Home training exercise equipment has been optimized by replacing the weight of strength training equipment, which is the core of weight control, with electric motors. For optimal design, process integration and design optimization (PIANO), a commercial PIDO tool, was analyzed in conjunction with DAFUL, a multi-body dynamics analysis program. When formulating the optimal design, the objective function was to minimize the weight, and the shape of the pinwheel and pulley used in exercise equipment was proposed considering the stress of cables as design constraints. As a result of optimization, design proposals were derived while meeting the design requirements and reduced by 5% compared to the initial model. In this work, we have miniaturized the shape of exercise equipment compared to conventional exercise equipment by optimizing its shape.
        4,000원
        14.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, a tuned mass damper(TMD) was installed to control the displacement response to earthquakes by generalizing to six analysis models according to the shape of the upper structure based on the case of various large spatial structures around the world. The six analysis models are ribbed type, latticed type, elliptical type, gable type, barrel type, and stadium type composed of 3D arch trusses. In this paper, ribbed type, latticed type and elliptical type were analyzed. The mass of each TMD was set to 1% of the total structural mass. Result of analyzing the optimal number and position of the analysis model, the displacement response control was the most excellent in the model with 6 and 8 TMDs, and the displacement response decreased in most cases. The displacement response control was better with installing the TMD at the edge point than focusing the TMD at the center of the analysis model. However, when 10 or more TMDs are installed or concentrated in the center, large loads intensively act on the structure, resulting in increased displacement. Therefore, although it is slightly different depending on the shape, it is judged that the displacement response control is the best to install 6 and 8 TMDs at the close to the edge point.
        4,000원
        15.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, a tuned mass damper(TMD) was installed to control the displacement response to earthquakes by generalizing to six analysis models according to the shape of the upper structure based on the case of various large spatial structures around the world. The six analysis models are ribbed type, latticed type, elliptical type, gable type, barrel type, and stadium type composed of 3D arch trusses. In this paper, ribbed type, latticed type and elliptical type were analyzed. The mass of each TMD was set to 1% of the total structural mass. Result of analyzing the optimal number and position of the analysis model, the displacement response control was the most excellent in the model with 6 and 8 TMDs, and the displacement response decreased in most cases. The displacement response control was better with installing the TMD at the edge point than focusing the TMD at the center of the analysis model. However, when 10 or more TMDs are installed or concentrated in the center, large loads intensively act on the structure, resulting in increased displacement. Therefore, although it is slightly different depending on the shape, it is judged that the displacement response control is the best to install 6 and 8 TMDs at the close to the edge point.
        4,000원
        16.
        2020.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Hydro-electric power is a method of generating electricity from the rotational force of turbine blades by using the potential energy of a river or reservoir water. Recently, the necessity of small hydropower development is expanding due to the development and support of renewable energy, and because of the difficulty and environmental problems of huge dams. The purpose of this paper is to deal with a method of increasing the efficiency of small water turbine that can be adopt in low head condition. In order to improve the turbine efficiency, channel shape is optimized in order to minimize head loss using computational fluid dynamics. The angle values for the contraction and enlargement part of the channel where the turbine is located are found from the analyses. Additionally, three-dimensional analysis is applied to the optimized channel shape in order to confirm the optimized pipe.
        4,000원
        17.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the shape optimization of the injector according to fuel and tip was conducted through analytical techniques. As an analysis condition, a flow rate of 0.08 kg / s was applied to the inlet and the outlet was given a condition of 0 Bar. The working fluid for each fuel was applied. As a result of the analysis, it can be seen that the pressure and velocity of model with the modified tip become higher than that of the base model in diesel. Compared with the base model in the case of gasoline, the modified model of the tip was found to have more stable injection when the pressure inside the combustion chamber and the straightness of the fuel were observed. Finally, in case of LPG injector, the same modified tip as gasoline was found to be the more stable injection. On the basis of this study result, the shape parameters of the injector can be inferred.
        4,000원
        18.
        2019.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        정전기 문제에 대한 연속체 기반 설계 민감도 해석(DSA) 방법을 해석적으로 유도하였다. 고차 항을 포함한 목적 함수를 고려하기 위해 해석 및 DSA 방법을 위해 9 노드 유한요소법 기반 함수를 형상 함수로 사용하였다. 최적화 과정에서의 설계 변수를 B- 스플라인 함수로 매개 변수화하여 비현실적인 형상이 아닌 부드러운 경계를 가진 최적 형상을 얻을 수 있었다. 유한요소법을 이용한 최적화 과정에서 일반적으로 발생하는 메쉬 얽힘 문제를 해결하기 위해 메쉬 균일화 기법을 사용하였 다. 이 기법은 디리쉴릿 에너지 범함수를 최소화함으로써 메쉬 균일성을 자동으로 얻을 수 있게 한다. 몇 가지 수치 예제들 을 통해 DEP 힘을 최대화하기 위한 평행판의 최적 형상을 얻어낸다. 이를 기존에 실험적으로 검증된 평행판의 최적 형상과 비교하여 그 특성을 논의하였다.
        4,000원
        20.
        2019.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigates the optimization of sectional shape with two dimensions on the rubber gasket of electric vehicle battery in order to maintain the airtightness and watertightness. For the section optimization, the shape of protruding section was analyzed as design variables and the design point was composed by the design of experiment(DOE) for the selected protruding shape. The uniaxial tensile test was carried out for the analysis of rubber gasket and five parameters of Mooney-Rivlin hyperelastic model were derived from the test data in order to construct the strain energy function for nonlinear behavior. The rubber gasket compression analysis was performed by using ANSYS of a commercial software and the performance of optimal shape was verified by performing the tests of watertightness and airtightness on the 3D rubber gasket with the derived section.
        4,000원
        1 2 3 4