검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 47

        1.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Energy storage systems should address issues such as power fluctuations and rapid charge-discharge; to meet this requirement, CoFe2O4 (CFO) spinel nanoparticles with a suitable electrical conductivity and various redox states are synthesized and used as electrode materials for supercapacitors. In particular, CFO electrodes combined with carbon nanofibers (CNFs) can provide long-term cycling stability by fabricating binder-free three-dimensional electrodes. In this study, CFO-decorated CNFs are prepared by electrospinning and a low-cost hydrothermal method. The effects of heat treatment, such as the activation of CNFs (ACNFs) and calcination of CFO-decorated CNFs (C-CFO/ACNFs), are investigated. The C-CFO/ACNF electrode exhibits a high specific capacitance of 142.9 F/g at a scan rate of 5 mV/s and superior rate capability of 77.6% capacitance retention at a high scan rate of 500 mV/s. This electrode also achieves the lowest charge transfer resistance of 0.0063 Ω and excellent cycling stability (93.5% retention after 5,000 cycles) because of the improved ion conductivity by pathway formation and structural stability. The results of our work are expected to open a new route for manufacturing hybrid capacitor electrodes containing the C-CFO/ACNF electrode that can be easily prepared with a low-cost and simple process with enhanced electrochemical performance.
        4,000원
        2.
        2020.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the effects of Co content on the microstructure and Charpy impact properties of Fe-Cr-W ferritic/martensitic oxide dispersion strengthened (F/M ODS) steels are investigated. F/M ODS steels with 0–5 wt% Co are fabricated by mechanical alloying, followed by hot isostatic pressing, hot-rolling, and normalizing/tempering heat treatment. All the steels commonly exhibit two-phase microstructures consisting of ferrite and tempered martensite. The volume fraction of ferrite increases with the increase in the Co content, since the Co element considerably lowers the hardenability of the F/M ODS steel. Despite the lowest volume fraction of tempered martensite, the F/M ODS steel with 5 wt% Co shows the highest micro-Vickers hardness, owing to the solid solution-hardening effect of the alloyed Co. The high hardness of the steel improves the resistance to fracture initiation, thereby resulting in the enhanced fracture initiation energy in a Charpy impact test at – 40oC. Furthermore, the addition of Co suppresses the formation of coarse oxide inclusions in the F/M ODS steel, while simultaneously providing a high resistance to fracture propagation. Owing to these combined effects of Co, the Charpy impact energy of the F/M ODS steel increases gradually with the increase in the Co content.
        4,000원
        3.
        2018.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This study examines the effect of microstructural factors on the strength and deformability of ferrite-pearlite steels. Six kinds of ferrite-pearlite steel specimens are fabricated with the addition of different amounst of Mn and V and with varying the isothermal transformation temperature. The Mn steel specimen with a highest Mn content has the highest pearlite volume fraction because Mn addition inhibits the formation of ferrite. The V steel specimen with a highest V content has the finest ferrite grain size and lowest pearlite volume fraction because a large amount of ferrite forms in fine austenite grain boundaries that are generated by the pinning effect of many VC precipitates. On the other hand, the room-temperature tensile test results show that the V steel specimen has a longer yield point elongation than other specimens due to the highest ferrite volume fraction. The V specimen has the highest yield strength because of a larger amount of VC precipitates and grain refinement strengthening, while the Mn specimen has the highest tensile strength because the highest pearlite volume fraction largely enhances work hardening. Furthermore, the tensile strength increases with a higher transformation temperature because increasing the precipitate fraction with a higher transformation temperature improves work hardening. The results reveal that an increasing transformation temperature decreases the yield ratio. Meanwhile, the yield ratio decreases with an increasing ferrite grain size because ferrite grain size refinement largely increases the yield strength. However, the uniform elongation shows no significant changes of the microstructural factors.
        4,000원
        4.
        2017.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This present study deals with the effect of micro-alloying elements and transformation temperature on the correlation of microstructure and tensile properties of low-carbon steels with ferrite-pearlite microstructure. Six kinds of lowcarbon steel specimens were fabricated by adding micro-alloying elements of Nb, Ti and V, and by varying isothermal transformation temperature. Ferrite grain size of the specimens containing mirco-alloying elements was smaller than that of the Base specimens because of pinning effect by the precipitates of carbonitrides at austenite grain boundaries. The pearlite interlamellar spacing and cementite thickness decreased with decreasing transformation temperature, while the pearlite volume fraction was hardly affected by micro-alloying elements and transformation temperature. The room-temperature tensile test results showed that the yield strength increased mostly with decreasing ferrite grain size and elongation was slightly improved as the ferrite grain size and pearlite interlamellar spacing decreased. All the specimens exhibited a discontinuous yielding behavior and the yield point elongation of the Nb4 and TiNbV specimens containing micro-alloying elements was larger than that of the Base specimens, presumably due to repetitive pinning and release of dislocation by the fine precipitates of carbonitrides.
        4,000원
        5.
        2016.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, recrystallization behaviors in the two-phase (α+γ) region of micro-alloyed steels such as Base, Nb, TiNbV and CAlN were investigated in terms of flow stress, microstructure and associated grain boundary characteristics. The flow stress of all specimens reached peak stress and gradually decreased, which means that recrystallization or recovery of proeutectoid deformed ferrite and recovery or transformation to ferrite of deformed austenite occurred by thermal activation. The precipitation of carbide or nitride via the addition of micro-alloying elements, because it reduced prior austenite grain size upon austenitization, promoted transformation of austenite to ferrite and increased flow stress. The strain-induced precipitation under deformation in the two-phase region, on the other hand, increased the flow stress when the micro-alloying elements were dissolved during austenitization. The recrystallization of the Nb specimen was more effectively retarded than that of the TiNbV specimen during deformation in the two-phase region.
        4,000원
        6.
        2016.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to improve the high-temperature oxidation stability, sintered 434L stainless steel is studied, focusing on the effect of the addition of metallic oxides to form stable oxide films on the inner particle surface. The green compacts of Fecralloy powder or amorphous silica are added on STS434L and oxidized at 950oC up to 210 h. The weight change ratio of 434L with amorphous silica is higher than that of 434L mixed with Fecralloy, and the weight increase follows a parabolic law, which implies that the oxide film grows according to oxide diffusion through the densely formed oxide film. In the case of 434L mixed with Fecralloy, the elements in the matrix diffuse through the grain boundaries and form Al2O3 and Fe-Cr oxides. Stable high temperature corrosion resistance and electrical resistivity are obtained for STS434L mixed with Fecralloy.
        4,000원
        7.
        2016.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigates the influence of sintering temperature on the magnetic properties and frequency dispersion of the complex permeability of Ni–Zn–Cu ferrites used for magnetic shielding in near-field communication (NFC) systems. Sintered specimens of (Ni0.7Zn0.3)0.96Cu0.04Fe2O4 are prepared by conventional ceramic processing. The complex permeability is measured by an RF impedance analyzer in the range of 1 MHz to 1.8 GHz. The real and imaginary parts of the complex permeability depend sensitively on the sintering temperature, which is closely related to the microstructure, including grain size and pore distribution. In particular, internal pores within grains produced by rapid grain growth decrease the permeability and increase the magnetic loss at the operating frequency of NFC (13.56 MHz). At the optimized sintering temperature (1225-1250°C), the highest permeability and lowest magnetic loss can be obtained.
        3,000원
        8.
        2015.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A new method is proposed for the calculation of the unrelaxed surface energy of spinel ferrite. The surface energy calculation consists of (1) setting the central and computational domains in the semi-infinite real lattice, having a specific surface, and having an infinite real lattice; (2) calculation of the lattice energies produced by the associated portion of each ion in the relative domain; and (3) dividing the difference between the semi-infinite lattice energy and the infinite lattice energy on the exposed surface area in the central domain. The surface energy was found to converge with a slight expansion of the domain in the real lattice. This method is superior to any other so far reported due to its simple concept and reduced computing burden. The unrelaxed surface energies of the (100), (110), and (111) of ZnFe2O4 and Fe3O4 were evaluated by using in the semi-infinite real lattices containing only one surface. For the normal spinel ZnFe2O4, the(100), which consisted of tetrahedral coordinated Zn2+ was electrostatically the most stable surface. But, for the inverses pinel Fe3O4, the(111), which consisted of tetrahedral coordinated Fe3+and octahedral coordinated Fe2+ was electrostatically the most stable surface.
        4,000원
        9.
        2015.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This paper presents a study on the room- and low-temperature impact toughness of hypoeutectoid steels with ferritepearlite structures. Six kinds of hypoeutectoid steel specimens were fabricated by varying the carbon content and austenitizing temperature to investigate the effect of microstructural factors such as pearlite volume fraction, interlamellar spacing, and cementite thickness on the impact toughness. The pearlite volume fraction usually increased with increasing carbon content and austenitizing temperature, while the pearlite interlamellar spacing and cementite thickness mostly decreased with increasing carbon content and austenitizing temperature. The 30C steel with medium pearlite volume fraction and higher manganese content, on the other hand, even though it had a higher volume fraction of pearlite than did the 20C steel, showed a better low-temperature toughness due to its having the lowest ductile-brittle transition temperature. This is because various microstructural factors in addition to the pearlite volume fraction largely affect the ductile-brittle transition temperature and lowtemperature toughness of hypoeutectoid steels with ferrite-pearlite structure. In order to improve the room- and low-temperature impact toughness of hypoeutectoid steels with different ferrite-pearlite structures, therefore, more systematic studies are required to understand the effects of various microstructural factors on impact toughness, with a viewpoint of ductile-brittle transition temperature.
        4,000원
        10.
        2014.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigated the magnetic properties and frequency dispersion of complex permeability of Ni-Zn-Co ferrites used for magnetic shielding in near field communication (NFC) system. The sintered specimens of (Ni0.7Zn0.3)1-xCoxFe2O4 composition were prepared by the conventional ceramic processing. The coercive force and saturation magnetization were measured by vibrating sample magnetometer. The complex permeability was measured by RF impedance analyzer in the range of 1 MHz~1.8 GHz. The coercive force increased and saturation magnetization decreased with increasing the Co substitution. The real and imaginary parts of complex permeability decreased and the resonance frequency increased with Co substitution, which was attributed to the increase in crystal anisotropy field and reduction in saturation magnetization. The effect of Co substitution could be found in reducing the magnetic loss to nearly zero at the operating frequency of NFC (13.56 MHz).
        4,000원
        11.
        2008.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The electromagnetic (EM) wave absorption properties of the nanocrystalline powder mixed with 5 to 20 vol% of Ni-Zn ferrites has been investigated in a frequency range from 100MHz to 10GHz. Amorphous ribbons prepared by a planar flow casting process were pulverized and milled after annealing at 425 for 1 hour. The powder was mixed with a ferrite powder at various volume ratios to tape-cast into a 1.0mm thick sheet. Results showed that the EM wave absorption sheet with Ni-Zn ferrite powder reduced complex permittivity due to low dielectric constant of ferrite compared with nanocrystalline powder, while that with 5 vol% of ferrite showed relatively higher imaginary part of permeability. The sheet mixed with 5 vol% ferrite powder showed the best electromagnetic wave absorption properties at high frequency ranges, which resulted from the increased imaginary part of permeability due to reduced eddy current.
        4,000원
        13.
        2004.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        최근 양어 양식장은 증가하고 있으며 이러한 곳에 사용할 가열장치는 경울 수온 조절을 위해 사용된다. 해수 가열장치는 부식성이 높고 압력이 높은 곳에 사용하기 위하여 고강도와 내식성이 요구된다. 만약 저강도와 저내식성을 갖게 되면 결국 누설 또는 파손되어 해수오염을 일으킬 수 있다. 대부분의 부식은 정체된 액과 틈이 형성된 부위에서 부식의 발생이 일어난다. 이 연구에서는 430 스테인레스재를 크기 15×20×3mmt에 대하여 1N H2SO4 + 0.05N NaCl용액을 사용하여 틈부식을 시험하였다. 틈의 크기는 0.24×3×15mmL로 하였으며 외부에 300mV전위를 인가하였다. 실험 결과 틈 부식 유기 시간은 750초로 나타나고, 틈 전위 강화는 -320에서 -399mV로 나타나 부식의 주 원인이 전위강화 기구에 의해 발생하였다.
        3,000원
        14.
        2004.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, nano-sized powder of Ni-ferrite was fabricated by spray pyrolysis process using the Fe-Ni complex waste acid solution generated during the shadow mask processing. The average particle size of the produced powder was below 100 nm. The effects of the reaction temperature, the inlet speed of solution and the air pressure on the properties of powder were studied. As the reaction temperature increased from 80 to 110, the average particle size of the powder increased from 40 nm to 100 nm, the fraction of the Ni-ferrite phase was also on the rise, and the surface area of the powder was greatly reduced. As the inlet speed of solution increased from 2 cc/min. to 10 cc/min., the average particle size of the powder greatly increased, and the fraction of the Ni-ferrite phase was on the rise. As the inlet speed of solution increased to 100 cc/min., the average particle size of the powder decreased slightly and the distribution of the particle size appeared more irregular. Along with the increase of the inlet speed of solution more than 10 cc/min., the fraction of the Ni-ferrite phase was decreased. As the air pressure increased up to 1 , the average particle size of the powder and the fraction of the Ni-ferrite phase was almost constant. In case of 3 air pressure, the average particle size of the powder and the fraction of the Ni-ferrite phase remarkably decreased.
        4,000원
        16.
        2003.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nano-sized Ni-ferrite powder was fabricated by spray pyrolysis process using the waste solution resulting from shadow mask processing. The average particle size of the powder was below 100 nm. The effects of the concentration of raw material solution, the nozzle tip size and air pressure on the properties of powder were studied. As the concentration increased, the average particle size of the powder gradually increased and its specific surface area decreased, but size distribution was much wider and the fraction of the Ni-ferrite phase greatly increased as the concentration increasing. As the nozzle tip size increased from 1 mm to 2 mm, the average particle size of the powder decreased. In case of 3 mm nozzle tip size, the average particle size of the powder increased slightly. On the other hand, in case of 5 mm nozzle tip size, average particle size of the powder decreased. Size distribution of the powder was unhomogeneous, and the fraction of the Ni-ferrite phase decreased as the nozzle tip size increasing. As air pressure increased up to 1 kg/, the average particle size of the powder decreased slightly, on the other hand, the fraction of the Ni-ferrite phase was almost constant. In case of 3kg/ air pressure, average particle size of the powder and the fraction of the Ni-ferrite phase remarkably decreased, but size distribution was narrow.
        4,000원
        19.
        2001.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Sr 페라이트 자석의 자기적 특성을 향상시키기 위하여 화학량론적 조건인 SrFe 12O19 [SrM]에서 11.7CoSrFe0.3 O19[Co0.3 -SrM]/ 및 Sr0.7 La0.3F e11.7 Co0.3 O19 /[(La-Co)0.3-SrM] 조성으로 혼합후 공기중 하소를 실시하여 하소분의 특성을 조사하였고, 소결조제와 함께 미분쇄한 후 공기 중에서 소결하여 페라이트 자석을 제조한 후 자기특성 변화를 조사하였다. 화학량론적인 조성에서 (La-Co)0.3-SrM 조성으로 원소치환을 실시한 하소분말을 사용하여 제조한 페라이트 자석의 소결특성은 포화자화 (Ms ) 71.08 emu/g, 보자력 (iHC ) 4.38 kOe 및 잔류자속밀도 (Br ) 4.18 kG, 보자력 (iHC ) 4.35 kOe, 최대에너지적(BHmax ) 4.3 MGOe으로 화학량론적인 조건에 비해 B Hmax가 10% 이상 더 큰 자기특성값을 나타내었다.나타내었다.다.
        4,000원
        20.
        2000.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        ABS sensor ring has been manufactured by powder metallurgy (P/M) method using 400 series ferrite stainless steel. The results are following. It is supposedly sufficient to use for control computer due to good experimental results of magnetic characteristics. Compared with sensor ring made by iron, 400 series ferrite stainless steel has shown a good corrosion resistance without an addition surface treatment. Thus the decreasing production process has been obtained. As a result mechanical characteristics of hardness and tensile test, 400 series ferrite stainless steel shown a good endurance when it is combined to constant velocity joint(C/V), and has a good hardness properties endurable to sand and pebble impact. The products before sintering are much more corrodible in the condition of spray test of salt water and ammonia than humidity and nitrogen condition.
        4,300원
        1 2 3