검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 80

        1.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently injection mold processing is necessary for the development of efficient solar concentrator system with a Fresnel lenses. Heat transfer mechanism in the Fresnel lens manufacturing process have a significant influence on precision machining and optical performance of solar power generation. In this study, we analyzed the thermal characteristics of temperature and heat flux distributions near the lens for transient molding process using CFD method. Initially for one second fast temperature variation on the upper surface of the lens leads to high heat flux distribution. It is gradually cooled to around 128℃ over a period of 60 seconds which is largely affected by the mold structure and the characteristics of the cooling lines. There is also high heat flux occurred on the lens upper side and lower surfaces with rapid temperature change. These results can be applied as fundamental design data for the manufacturing process in the development of Fresnel lenses.
        4,000원
        2.
        2023.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, we designed and manufactured a large angular contact ball bearing (LACBB) with low deformation using JIS-SUJ2 steel and analyzed changes in its structural characteristics and chemical composition upon heat treatment. The bearing was produced by hot forging and heat treatment including a quenching and tempering (Q/T) process, and its properties were analyzed using 4 mm thick specimens. A difference in the size distribution of the carbide in the outer and inner parts of the bearing was observed and it was confirmed that large and non-uniform carbide was distributed in the inner part of the bearing. After heat treatment, the hardness value of the outer part increased from 13.4 HRC to 61 HRC and the inner part increased from 8.0 HRC to 59.7 HRC. As a result of X-ray diffraction (XRD) measurements, the volume fraction of the retained austenite contained in the outer part was calculated to be 3.5~4.8 % and the inner part was calculated to be 3.6~5.0 %. The surface chemical composition and the content of chemical bonds were quantified through X-ray photoelectron spectroscopy (XPS), and a decrease in C=C bonds and an increase in Fe-C bonds were confirmed.
        4,000원
        3.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This research measured the change in mechanical characteristics of a sample obtained by finishing a metal coating to an engineering plastic manufactured using a 3D printer to satisfy both lightweight and quality characteristics. High-Temp material, which can be applied to space thermal environments with large temperature fluctuations, was applied as the engineering plastic material, and Stereolithography(SLA) method, which has relatively higher precision than Fused Film Fabrication(FFF) method, was selected as the manufacturing method. Electroless & electroplating were performed by metal coating on the surface to satisfy the characteristics of products requiring electrical conductivity. Tensile and bending tests were conducted to verify a change in the mechanical characteristics of a sample completed with a metal coating, and an adhesion test of the metal coating was also added.
        4,000원
        4.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, halogen lamps for vehicle exterior lamp systems are being replaced by LEDs (Light Emitting Diode) in consideration of miniaturization, power consumption, life, luminance, and eco-friendliness. Due to regulations on the amount of light required, luminance, light uniformity, and glare prevention, it is required to develop a light guide for controlling a light source of an LED lamp for a vehicle. For the development of the light guides, the development of machining technology that can cut micro patterns of hundreds of micrometers scale into surface roughness of tens of nanometers scale must be preceded. In this study, the effect of variations in cutting conditions on surface roughness was analyzed through experiments. The micro patterns was manufactured by cutting into STAVAX material, and the surface of the micro patterns was super-finished using a ball-shaped PCD (polycrystalline diamond) tool without flutes. In experiments, the cutting conditions of the super-finishing process were varied, and the varied cutting conditions were feed rate, radial depth of cut, and spindle speed
        4,000원
        5.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : To efficiently manage pavements, a systematic pavement management system must be established based on regional characteristics. Suppose that the future conditions of a pavement section can be predicted based on data obtained at present. In this case, a more reasonable road maintenance strategy should be established. Hence, a prediction model of the annual surface distress (SD) change for national highway pavements in Gangwon-do, Korea is developed based on influencing factors. METHODS : To develop the model, pavement performance data and influencing factors were obtained. Exploratory data analysis was performed to analyze the data acquired, and the results show that the data were preprocessed. The variables used for model development were selected via correlation analysis, where variables such as surface distress, international roughness index, daily temperature range, and heat wave days were used. Best subset regression was performed, where the candidate model was selected from all possible subsets based on certain criteria. The final model was selected based on an algorithm developed for rational model selection. The sensitivity of the annual SD change was analyzed based on the variables of the final model. RESULTS : The result of the sensitivity analysis shows that the annual SD change is affected by the variables in the following order: surface distress ˃ heat wave days ˃ daily temperature range ˃ international roughness index. CONCLUSIONS : An annual SD change prediction model is developed by considering the present performance, traffic volume, and climatic conditions. The model can facilitate the establishment of a reasonable road maintenance strategy. The prediction accuracy can be improved by obtaining additional data, such as the construction quality, material properties, and pavement thickness.
        4,300원
        6.
        2022.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, an Co/Fe coated porcelain using a cobalt and ferrous sulfate was sintered at 1,250 oC. The specimens were investigated by HR-XRD, FE-SEM (EDS), Dilatometer, and UV-vis spectrophotometer. The surface of the porcelain was uniformly fused with the pigment, and white ware and celadon body specimens were densely fused to a certain thickness from the surface. Other new compounds were produced by the chemical reaction of cobalt/ferrous sulfate with the porcelain body during the sintering process. These compounds were identified as cobalt ferrite spinel phases for white ware and white mixed ware, and an andradite phase for the celadon body, and the amorphous phase, respectively. As for the color of the specimens coated with cobalt and ferrous mixed pigments, it was found that the L* value was greatly affected by the white ware, and the a* and b* values were significantly changed in the celadon body. The L* values of the specimens fired with pure white ware, celadon body, and white mix ware were 72.1, 60.92, 82.34, respectively. The C7F3 pigment coated porcelain fired at 1,250 oC had L* values of 39.91, 50.17, and 40.53 for the white ware, celadon body, and white mixed ware, respectively; with a* values of -1.07, -2.04, and -0.19, and at b* values of 0.46 and 6.01, it was found to be 4.03. As a new cobalt ferrite spinel phase was formed, it seemed to have had a great influence on the color change of the ceramic surface.
        4,000원
        7.
        2022.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The surface distress of asphalt pavements is one of the major factors affecting the safety of road users. The aim of this study was to analyze the factors influencing the occurrence of surface distress and statistically predict its annual change to contribute to more reasonable asphalt pavement management using the data periodically collected by the national highway pavement data management system. METHODS : In this study, the factors that were expected to influence the surface distress were determined by reviewing the literature. The normality was secured by changing the forms of the variables to make the distribution of the variables got closer to normal distribution. In addition, min-max normalization was performed to minimize the effect of the unit and magnitude of the candidate independent variables on the dependent variable. The final candidate independent variables were determined by analyzing the correlation between the annual surface distress change and each candidate independent variable. In addition, a prediction model was developed by performing data grouping and multi-regression analysis. RESULTS : An annual surface distress change prediction model was developed using present surface distress, age, and below 0 ℃ days as the independent variables. As a result of sensitivity analysis, the surface distress affected the annual surface distress change the most. The positive correlation between the dependent variable and each independent variable demonstrated engineering and statistical meaningfulness of the prediction model. CONCLUSIONS : The surface distress in the future can be predicted by applying the annual surface distress prediction model to the national highway asphalt pavement sections with survey data. In addition, the prediction model can be applied to the national highway pavement condition index (NHPCI) evaluating the national highway asphalt pavement conditions to be used in the prediction of future NHPCI.
        4,000원
        8.
        2021.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This study investigated the reaction between clay and Mn. Mn was coated using a manganese sulfate on porcelain plate and sintered from 1,100 oC to 1,250 oC. The body begin to shrink around 950 oC with the increase in temperature and rapidly progressed after 1,100 oC. Shrinkage of celadon body was performed at a lower temperature than for other substrates. Quartz, kaolin, and feldspar were the main crystalline phases of the starting materials, but they became mullite and crystobalite during the firing process, and some formed amorphous glass. When manganese sulfate was applied and fired, manganese oxide was fused, and some manganese oxide reacted with the substrate to show a dense microstructure different from that of the substrate; the substrate had pores. The manganese coated porcelain fired at 1,200 oC had L* values of 55.25, 36.87, and 37.13 for the white ware, celadon body, and white mixed ware, respectively; with a* values of 4.63, 3.07, and 2.15, and b* values of 7.93 and 3.98, it was found to be 3.42. This result indicated that the color of the surface was affected during firing by the chemical reaction between the substrate and manganese.
        4,000원
        10.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Numerous chemical modifications on activated carbon such as acidic conditioning, thermal treatment and metal impregnation have been investigated to enhance adsorption capacities of micropollutants in water treatment plants. In this study, chemical modification including acidic, alkaline treatment, and iron-impregnation was evaluated for adsorption of 2,4-dichlorophenol (2,4-DCP). For Fe-impregnation, three concentrations of ferric chloride solutions, i.e., 0.2 M, 0.4 M, and 0.8 M, were used and ion-exchange (MIX) of iron and subsequent thermal treatment (MTH) were also applied. Surface properties of the modified carbons were analyzed by active surface area, pore volume, three-dimensional images, and chemical characteristics. The acidic and alkaline treatment changed the pore structures but yielded little improvement of adsorption capacities. As Fe concentrations were increased during impregnation, the active adsorption areas were decreased and the compositional ratios of Fe were increased. Adsorption capacities of modified ACs were evaluated using Langmuir isotherm. The MIX modification was not efficient to enhance 2,4-DCP adsorption and the MES treatment showed increases in adsorption capacities of 2,4-DCP, compared to the original activated carbon. These results implied a possibility of chemical impregnation modification for improvement of adsorption of 2,4-DCP, if a proper modification procedure is sought.
        4,200원
        11.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Using lanthanum zinc oxide (LZO) film with the ion-beam irradiation, uniform and homogeneous liquid crystal (LC) alignment was achieved. To fabricate the LZO thin film on glass substrate, solution process was conducted as a deposition method. Cross-polarized optical microscopy (POM) and the crystal rotation method reveal the state of LC alignment on the ion-beam irradiated LZO film. Between orthogonally placed polarizers, POM image showed constant black color with regular transmittance. Furthermore, collected incidence angle versus transmittance curve from the crystal rotation method revealed that the LC molecules on the ion-beam irradiated LZO film were aligned homogeneously. Atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) were conducted to reveal the relationship between the ion-beam irradiation and the LC alignment. The ion-beam irradiation changed the LZO film surface to rougher than before by etching effect. Numerical roughness values from AFM analysis supported this phenomenon specifically. XPS analysis showed the chemical composition change due to the ion-beam irradiation by investigation of O 1s, La 3d and Zn 2p spectra. The ion-beam irradiation induced the breakage of chemical bonds in the LZO film surface and this occurred surface chemical anisotropic characteristics for uniform LC alignment.
        4,000원
        12.
        2020.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        산업분야에서는 다양한 용액을 대상으로 분리, 정제, 농축 등의 공정이 필요하며, 분리막이 그 역할을 잘 수행해 오고 있다. 반면, 처리 대상 용액이 강산을 함유하고 있는 경우, 대부분의 분리막은 산에 취약하기 때문에 사용이 제한적일 수밖에 없다. 현재 내산성 분리막으로 상용화 되고 있는 분리막은 투과속도가 낮은 문제점을 갖고 있다. 이에, 투과속도가 높 은 폴리아마이드 분리막에 내산성을 부여하기 위한 접근 방법을 모색하기 위한 기초 자료로 본 총설에서는 폴리아마이드 분 리막이 산성 용액 노출 시 표면성질 및 투과특성이 변화하는 원인과 기작에 대해 살펴보고자 한다.
        4,000원
        13.
        2019.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        CNC cutting process has been mainly used for processing metal materials, and wood processing is also changing to machining by CNC machine. But the researches on the CNC machining of wood and its characteristics were rarely carried out. In this study, we analyzed the machined surface according to the cutting conditions such as the cutting direction, spindle speed, feed rate, cutting depth, chip removal in the CNC machining of wood. The consideration of cutting conditions and their effects on the surface finish will provide possibilities for improving the wood machining processes.
        4,000원
        14.
        2019.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 피부표면온도가 유효물질 경피 흡수와 피부 상태변화에 미치는 영향을 실험하였다. 열에 강한 나이아신아마이드 10% 에멀젼을 인공피부에 도포하여 경피 흡수 시험을 진행하였고 동일한 에멀젼으로 피부임상시험을 시행하여 온열효과를 확인하였다. 그 결과 피부표면 온도 42℃에서 정상 피부 온 도보다 도포 10분 경과 후 2배, 15분 경과 후 3배의 경피 흡수 효과를 보였다. 피부임상평가에서는 임상대상자 모두 특이한 이상반응을 보이지 않았으며 수분, 유분 항목에서 통계적으로 유의한 효과를 나타냈다. 이상의 결과로 온열은 유효물질 경피 흡수 촉진과 피부상태 개선에 긍정적인 영향을 미치는 것을 확인하였고 이는 온열을 이용한 다양한 뷰티디바이스 개발에 기초자료가 될 것으로 판단된다.
        4,000원
        16.
        2018.12 구독 인증기관 무료, 개인회원 유료
        Poly (ethylene terephthalate) (PET) 필름은 여러 가지 우수한 필름 특성으로 인하여 다양한 방면에서 이용되 고 있다. 그러나 PET 필름은 낮은 표면에너지로 인하여 젖음성과 접착력이 약해 그 응용에 제약이 있다. 따라서 PET 필름이 유연 전자회로 기판으로 사용되기 위해서는 필름의 표면에너지를 필름 자체의 특성에 변화주지 않는 범위에서 변화시켜 낮춰줘야 할 필요가 있다. 본 연구에서는 상용의 PET 필름에 자외선과 공기-플라스마 처리를 행하였으며, 각각의 조건에 따른 필름의 표면을 접촉각 측정기, X-선 분광기 등을 사용하여 조사하였다. 또한 시간에 따른 표면특성의 변화를 연구하였다. 그 결과 자외선과 공기-플라스마로 처리된 필름은 표면이 극성으로 변화하였으며, 시간에 따라 서서히 원래의 극성으로 돌아가는 것을 확인하였으며, 초기 상태로의 극성의 회복 시간은 자외선과 공기-플라스마 처리 시간과 관련되는 것을 확인하였다. 이는 PET 필름이 인쇄전자 분야에서 유연기판 재료로서 이용되는 데에 중요한 결과라고 할 수 있다.
        4,000원
        17.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        목적: 백내장 환자를 대상으로 수술 전과 후의 안구표면의 온도변화 양상을 열화상카메라의 서모그래피를 이용하여 연구 하고자 하였다. 방법: 본 연구는 백내장 수술을 받은 환자 50-79세까지 75명 75안의 환자 군을 대상으로 하였다. 과거에 굴절교정수술, 각막관련 수술을 받은 자와 콘택트렌즈를 사용하는 자, 눈물관 이상자, 전신질환 치료 약물을 복용하는 자 등 눈물분비와 눈물막에 영향을 줄 수 있는 자는 연구 대상자에서 제외하였고 눈물막파괴시간 검사(Tear Break Up Time, BUT), 쉬르머 검사(Schirmer’s Test), 맥모니테스트(Mcmonnies questionnaire)를 시행한 후 열화상카메라(Cox CX series, Answer., Korea)를 이용하여 안구표면의 온도변화를 실시간으로 측정하였다. 결과: 전체 대상자의 술 전 안구표면 온도는 35.20±0.54 ℃이었고 술 후에는 35.30±0.53 ℃로 표면온도가 상승하였으나 유의한 차이를 보이지 않았다. 안구표면 온도변화는 술전에서 -0.12±0.08 △(℃/sec)에서 술 후 -0.18±0.07 △(℃/sec)로 통계학적으로 유의한 결과를 나타냈다. 연령 별 비교에서는, 50 대군은 백내장 술 전 대상자의 안구표면 온도변화가 -0.14±0.09 △(℃/sec)에서 -0.19±0.05 △(℃/sec)으로 나타났고 60 대군에서는 -0.12±0.08 △(℃/sec)에서 -0.15±0.07 △(℃/sec)으로 나타났으며 70 대군에서는 술 전 대상자의 안구표면 온도변화는 -0.12±0.08 △(℃/sec)에서 -0.18±0.07 △(℃/sec)으로 전 연령에서 모두 유의한 안구표면 온도변화를 보였다. 결론: 백내장 술 후에는 안구건조증 평가지표가 모두 감소하였고 안구표면 온도변화가 유의함을 보였다. 안구표면의 서모그래피 기술은 비침습적으로 안구건조증을 평가하는데 용이하였고 객관적으로 수치화할 수 있는 장점이 있어 다양한 안구건조증 연구에 활용 될 것으로 기대된다.
        4,000원
        18.
        2018.09 구독 인증기관 무료, 개인회원 유료
        본 연구는 두 종류의 표면 개질제 trimethylchlorosilane(TMCS), hexamethyldisilazane(HMDZ)를 사용하여 fumed silica의 표면 개질 과정에서 첨가량 변화에 따른 소수성 및 분산성 변화에 대한 연구를 진행하였다. 표면 개질 과정에서 사용된 개질제는 fumed silica 중량 대비 0~80wt%로 첨가하였으며, FT-IR(Fourier transform infrared spectroscopy), EA(Elemental analysis) 분석을 통해 개질제의 첨가량이 증가함에 따라 fumed silica의 소수성이 증가함을 확인하였다. 그리고 fumed silica의 소수성이 증가함에 따른 분산성 변화 분석을 위해 TEM(Transmission electron spectroscopy), PSA(Particle size analyzer)를 측정하였다. 그 결과, fumed silica의 소수성이 증가함에 따라 fumed silica의 입자간의 응집력이 약화되어 분산성이 향상되고 평균 입자 크기 또한 감소하는 것을 확인할 수 있었다. Fumed silica의 개질 안정성을 평가하기 위해 자체 실험을 진행한 결과, 소수성 개질된 fumed silica의 경우 표면 개질제 첨가량과 관계없이 일정 시간 이후에도 소수성이 유지되고 있음을 확인하였다.
        4,000원
        1 2 3 4