검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 253

        3.
        2024.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Plastics are widely used in industries in human society and because of their structural stability, degradation is a serious global issue. To estimate the degradation of plastic, 31 edible mushrooms were cultured with the selected plastic films (polyethylene [PE], polystyrene [PS], and poly(ethylene terephthalate) [PET]) for 3 months at 25 °C. Measuring the weight of the films showed that four species of mushrooms, namely Porostereum spadiceum, Ganoderma lucidum, Coprinellus micaceus, and Pleurotus ostreatus, exhibited the highest degrees of plastic degradation. In addition, the mushrooms and fungi that exhibited the most significant plastic degradation were cross-cultured to promote this degradation. As a result, cross-cultivation of G. lucidum and Aspergillus niger showed a weight loss of 2.49% for the PET film. For the PS film, Aspergillus nidulans showed a weight loss of 4.06%. Cross-cultivation of A. nidulans and C. micaceus, which showed a weight loss of 2.95%, was noted as an alternative for PS biodegradation, but is harmful to humans. These bio-degradation effects of edible mushroom will contribute to the development of alternatives for eco-friendly plastic degradation.
        4,000원
        4.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Composite-based piezoelectric devices are extensively studied to develop sustainable power supply and selfpowered devices owing to their excellent mechanical durability and output performance. In this study, we design a leadfree piezoelectric nanocomposite utilizing (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 (BCTZ) nanomaterials for realizing highly flexible energy harvesters. To improve the output performance of the devices, we incorporate porous BCTZ nanowires (NWs) into the nanoparticle (NP)-based piezoelectric nanocomposite. BCTZ NPs and NWs are synthesized through the solidstate reaction and sol-gel-based electrospinning, respectively; subsequently, they are dispersed inside a polyimide matrix. The output performance of the energy harvesters is measured using an optimized measurement system during repetitive mechanical deformation by varying the composition of the NPs and NWs. A nanocomposite-based energy harvester with 4:1 weight ratio generates the maximum open-circuit voltage and short-circuit current of 0.83 V and 0.28 A, respectively. In this study, self-powered devices are constructed with enhanced output performance by using piezoelectric energy harvesting for application in flexible and wearable devices.
        4,000원
        5.
        2023.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, changes in the quality and headspace O2/CO2 concentrations of cubed radish (Raphanus sativus L.) kimchi (CR-kimchi) packaged using multilayer airtight film (MAF), half-area breathable film (HABF), partial area breathable film (PABF), and one-way degassing valve-mounted film (ODVF) were investigated during storage under altering temperature conditions. The total lactic acid bacteria count in CR-kimchi samples stored for 6 days at 0℃, followed by 8 days at 6oC, increased to 7.8-7.9 log CFU/g, regardless of the packaging. The titratable acidity of the CR-kimchi samples increased to 0.6-0.7% during storage at 0oC for 6 days and then at 6oC for 8 days; it was maintained at 0.6-0.8% for 32 days of storage at 3oC. After 46 days of storage, the reduced sugar content of CR-kimchi packaged using MAF, HABF, PABF, and ODVF decreased to 26.8-30.3 mg/g, indicating no significant (p>0.05) differences. However, during storage, headspace CO2 concentration and film volume were lower in the HABF treatment than in the control, PABF, and ODVF treatments, indicating that HABF packaging combined with supercooled (3oC) storage can extend the optimal ripening period of CR-kimchi without packaging expansion during storage.
        4,200원
        8.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study aimed to develop an optimal greenhouse model for strawberry seedling during the summer high-temperature period based on the results of field surveys. We conducted a survey on the structure types of 46 strawberry seedling farms nationwide, including width, ridge height, eaves height, ventilation method, seedling bed width, and spacing. Based on the survey results, we derived the optimal greenhouse model by considering various factors. The greenhouse width was set at 14 meters to maximize the efficiency of seedling beds and overall space. The height was determined at 2 meters, taking into account ventilation during the summer season. To reduce stress on the supporting structure due to snow loads, we established a reinforcement installation angle of 50 degrees. We analyzed two different models that use support beams with dimensions of φ48.1×2.1t and φ59.9×3.2t, respectively, to ensure structural safety against meteorological disasters, considering regional design wind speeds and snow accumulation. We utilized these developed greenhouse model to conduct strawberry seedling experiments, resulting in a high survival rate of average 93.2%. These findings confirm the usefulness of the strawberry seedling greenhouse in improving the seedling environment and enhancing overall efficiency.
        4,000원
        9.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        ITO 투명 전극 필름은 디스플레이, 전기 자동차 등 산업 전 범위에서 널리 사용되는 전자 재료이다. 본 연구에서는 이러한 indium tin oxide (ITO) 필름의 열성형 안정성을 향상시키기 위하여 Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) 전도성 고분자 코팅 용액 조성을 결정하였다. 1000 S/cm의 고 전도성을 보이는 PEDOT:PSS 용액에 끓는점이 각기 다른 4가지 종류의 용매를 희석하였고, 코팅 전 후 면저항 변화를 분석하였다. 또한 380~800 nm 영역의 광 투과율 분 석 및 Raman 스펙트럼 분석을 통하여 PEDOT:PSS 박막이 코팅된 ITO 투명 전극의 전기적 특성 결정 메커니즘을 규명하였 다. 230°C 열성형 공정 결과 ITO 필름은 113% 연신 상태에서 이미 전기 전도성을 읽었지만, ethylene glycol을 희석 용매로 사용하여 얻어진 전도성 고분자 박막이 적용된 ITO 필름은 126% 고 연신 상태에서도 초기 60 Ω/sq 면저항을 246 Ω/sq로 유지하는 우수한 전기 전도성을 보였다.
        4,000원
        10.
        2023.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        먼지 필터 막은 인간의 건강, 안전 및 환경 보호의 몇 가지 중요한 측면에 기여하기 때문에 인간의 삶과 다양한 산업에서 중요한 역할을 한다. 이 연구는 고온 조건에 대한 우수한 열안정성과 접착 특성을 가진 polysulfone@polyphenylene sulfide/polytetrafluoroethylene (PSf@PPS/ePTFE) 복합 먼지 필터 막의 개발을 제시한다. FT-IR 분석은 PSF 접착제가 PPS 직 물에 성공적으로 함침되고 ePTFE 지지체와의 상호 작용을 확인한다. FE-SEM 이미지는 향상된 섬유 상호 연결 및 PSf 농도 와 함께 접착력을 보여준다. PSf@PPS/ePTFE-5는 가장 적합한 다공성 구조를 보여준다. 복합 막은 400°C까지 예외적인 열 안정성을 보여준다. 박리 저항 테스트는 먼지 여과에 대한 충분한 접착력을 보여 공기 투과성을 희생시키지 않고 힘든 고온 조건에서 신뢰할 수 있는 성능을 보장한다. 이 막은 산업 응용 분야에서 유망한 잠재력을 제공한다. 더 나아가 최적화 및 응 용 가능성을 탐구할 수 있다.
        4,000원
        11.
        2023.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Thermoelectric (TE) energy harvesting, which converts available thermal resources into electrical energy, is attracting significant attention, as it facilitates wireless and self-powered electronics. Recently, as demand for portable/wearable electronic devices and sensors increases, organic-inorganic TE films with polymeric matrix are being studied to realize flexible thermoelectric energy harvesters (f-TEHs). Here, we developed flexible organic-inorganic TE films with p-type Bi0.5Sb1.5Te3 powder and polymeric matrices such as poly(3,4-eethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) and poly (vinylidene fluoride) (PVDF). The fabricated TE films with a PEDOT:PSS matrix and 1 wt% of multi-walled carbon nanotube (MWCNT) exhibited a power factor value of 3.96 μW ‧ m-1 ‧ K-2 which is about 2.8 times higher than that of PVDF-based TE film. We also fabricated f-TEHs using both types of TE films and investigated the TE output performance. The f-TEH made of PEDOT:PSS-based TE films harvested the maximum load voltage of 3.4 mV, with a load current of 17.4 μA, and output power of 15.7 nW at a temperature difference of 25 K, whereas the f-TEH with PVDF-based TE films generated values of 0.6 mV, 3.3 μA, and 0.54 nW. This study will broaden the fields of the research on methods to improve TE efficiency and the development of flexible organic-inorganic TE films and f-TEH.
        4,000원
        12.
        2023.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Zinc-ion Batteries (ZIBs) are currently considered to be effective energy storage devices for wearable electronics because of their low cost and high safety. Indeed, ZIBs show high power density and safety compared with conventional lithium ion batteries (LIBs) and exhibit high energy density in comparison with supercapacitors (SCs). However, in spite of their advantages, further current collector development is needed to enhance the electrochemical performance of ZIBs. To design the optimized current collector for high performance ZIBs, a high quality graphene film is suggested here, with improved electrical conductivity by controlling the defects in the graphene film. The graphene film showed improved electrical conductivity and good electron transfer between the current collector and active material, which led to a high specific capacity of 346.3 mAh g-1 at a current density of 100 mA g-1, a high-rate performance with 116.3 mAh g-1 at a current density of 2,000 mA g-1, and good cycling stability (68.0 % after 100 cycles at a current density of 1,000 mA g-1). The improved electrochemical performance is firmly because of the defects-controlled graphene film, leading to improved electrical conductivity and thus more efficient electron transfer between the current collector and active material.
        4,000원
        15.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was carried out to examine the physical characteristics of bacterial cellulose (BC) and its optimal culture condition using coffee by-products. Recently, recycling resources and employing eco-friendly materials have been raised as significant issues in the food industry. As the coffee industry develops, interests and efforts for recycling coffee wastes are also growing. This study attempted to confirm the production of BC by utilizing spent coffee grounds filtrate as a medium. In order to confirm the optimal culture conditions for BC production, different culture methods, initial pH, culture temperature, and culture period were examined. The optimal pH and temperature were 6.0 and 30oC, and the optimal culture period was 14 days. The cultivated BC was dried by hot air drying, freezedrying, and mold drying, respectively. Then, the properties of the BC films, such as tensile strength, elongation, water-solubility, thickness, and chromaticity were compared. The drying method affected the shape and structure of the final BC films. The production of BC film is expected to expand opportunities for recycling coffee by-products and contribute to solving environmental problems caused by food waste.
        4,000원
        16.
        2022.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        As coffee consumption increases, coffee extraction's by-products increase. Research on coffee by-product recycling is fundamental as social costs and environmental problems arise from the course of coffee processing, estimated to be 270,000 tons per year. This study attempted to confirm the possibility of an eco-friendly food packaging material by solvating cellulose from spent coffee grounds. For cellulose solubility, delignification and TEMPO (2,2,6,6- tetramethylpiperidin-1-oxyl) oxidation treatment were performed. An optimal plasticizer (glycerol) and a crosslinking agent (cinnamaldehyde) were added to the film-forming solution for film manufacturing, while physical treatment (high-pressure treatment, 276 MPa, 10 times) was done to improve physical properties. Then, the film was dried by a solution-casting method. Physical properties of food packaging materials such as tensile strength, elongation, water-solubility, thickness, and chromaticity were measured. In particular, the film to which 1.5% glycerol was added showed the highest value among the physical properties of the dried film. These results indicate that TEMPOSCG films have potential as eco-friendly food packaging materials in the food industry.
        4,000원
        17.
        2022.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        피마자 기반 수성 폴리우레탄(CPUD)을 얻기 위해 무 변성 피마자유 (CO) 와 투명 필름을 얻기 위해 이소포론 디이소시아네이트(IPDI)를 사용했다. 유연성을 증가시키기 위해 폴리프로필렌글리콜 (PPG)의 혼합 효과를 분석하였다. 또한, 사슬연장제로 에틸렌다이아민(EDA)을 사용했다. 각각 피마자유 함유에 따른 변화와 사슬연장제 변화에 따른 인장강도, 연신율 내마모성을 측정했다. 피마자유 함유가 많은 시료의 인장강도가 1.112kgf/㎟, 연신율 88%로 나타났으며, 사슬연장제 함유가 많은 시료의 인장 강도가 3.33kgf/㎟, 연신율 99%로 측정되었다. 표면강도는 SEM을 통해 육안으로 확인하였다.
        4,000원
        20.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study is to examine emerging trends in fashion films and the impact of COVID-19 through analysis of Prada films produced before and after the initial spread of the COVID-19 pandemic. We selected 40 cases occurring prior to the pandemic, from June to December 2019, and 21 cases occurring since the outbreak, from June to December 2020. To identify relevant trends, we conduct a literature review and examine a range of case studies. First, travel restrictions and confronting activities currently inhibit production. Through our case study analysis, we identify nineteen cases in between before and after COVID-19. Secondly, Prada can be seen to mainly produce episodes and promotional films. Additionally, it develops content showcasing brand values in environmental, cultural, creative, and sport-related fields; intended audiences extend beyond the realm of fashion. Thirdly, a new film category began to develop after the outbreak of COVID-19, namely, narrative films utilizing virtual interactions. According to our analysis results, we expect film production that is increasingly facilitated by virtual communication, technology utilization, and online platforms to continue even after the resolution of COVID-19. New film categories will emerge, and we predict that the gap between the number of cases before and after COVID-19 will narrow.
        5,100원
        1 2 3 4 5