검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 16

        1.
        2024.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 케이트 크로포드와 블라단 욜러의 협업 프로젝트인 <AI 시스템의 해부>를 중심으로 인간, 사회, 지구를 관통하는 인공지능 시스템의 작동에 대한 그들의 비판적 담론을 읽어내는 데에 목적이 있다. <AI 시스템의 해부>는 인공지능 음성인식 스피커인 아마존 에코를 사례로 삼아 인공지능 기술세계의 물질적, 사회적 조건을 가시화한 ‘데이터 시각화’로서, 인공지능 시스템의 이면에 감추어진 노동, 데이터, 자원의 무자비한 추출 구조를 드러낸 해부학적 지도이다. 크로포드와 욜러는 인공지능 기술이 작동하는 기술세계의 지형을 탐구하고 시각화하 기 위해 ‘비판적 지도제작’을 중요한 인식적, 실천적 방법으로 사용해 왔다. 이에 본고는 <AI 시스템의 해부>에 대한 ‘지도 읽기’를 수행하되, 철학자 레비 브라이언트가 ‘존재지도학’에서 제시하는 지형학의 네 가지 요소를 범주로 삼아 거대 기술세계 지형도의 구조와 의미를 분석하였 다. 이를 통해 본고는 크로포트와 욜러의 지형도가 인공지능 기술세계의 광범위한 추출주의를 비판적으로 가시화하고 있음을 강조하였다.
        6,000원
        2.
        2024.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : For autonomous vehicles, abnormal situations, such as sudden changes in driving speed and sudden stops, may occur when they leave the operational design domain. This may adversely affect the overall traffic flow by affecting not only autonomous vehicles but also the driving environment of manual vehicles. Therefore, to minimize the traffic problems and adverse effects that may occur in mixed traffic situations involving manual and autonomous vehicles, an autonomous vehicle driving support system based on traffic operation optimization is required. The main purpose of this study was to build a big-data-classification system by specifying data classification to support the self-driving of Lv.4 autonomous vehicles and matching it with spatio-temporal data. METHODS : The research methodology is explained through a review of related literature, and a traffic management index and big-dataclassification system were built. After collecting and mapping the ITS history traffic information data of an actual Living Lab city, the data were classified using the traffic management indexing method. An AI-based model was used to automatically classify traffic management indices for real-time driving support of Lv.4 autonomous vehicles. RESULTS : By evaluating the AI-based model performance using the test data from the Living Lab city, it was confirmed that the data indexing accuracy was more than 98% for the KNN, Random Forest, LightGBM, and CatBoost algorithms, but not for Logistics Regression. The data were severely unbalanced, and it was necessary to classify very low probability nonconformities; therefore, precision is also important. All four algorithms showed similarly good performances in terms of accuracy. CONCLUSIONS : This paper presents a method for efficient data classification by developing a traffic management index to easily fuse and analyze traffic data collected from various institutions and big data collected from autonomous vehicles. Additionally, EdgeRSU is presented to support the driving of Lv.4 autonomous vehicles in mixed autonomous and manual vehicles traffic situations. Finally, a database was established by classifying data automatically indexed through AI-based models to quickly collect and use data in real-time in large quantities.
        4,000원
        3.
        2024.06 KCI 등재후보 구독 인증기관 무료, 개인회원 유료
        재가노인 중에서 일상생활을 정상적으로 유지하려 함에 있어 제3자의 도 움을 필요로 하는 장기요양 인정자의 비중도 증가하고 있다. 돌봄을 필요로 하는 노인의 수는 지속적으로 증가할 것으로 예측되는 반면, 돌봄 제공자인 장기요양 인력의 수는 감소하는 경향이 나타나 향후 인력 부족이 예측되고 있다. 이러한 돌봄 수요와 공급 불균형 대응방안의 일환으로 디지털 돌봄 체 계에 대한 중요성이 부각되고 있으며, 노인의 돌봄권 보장과 노인을 돌보는 가족, 돌봄 제공자(요양보호사 등)의 돌봄 부담 완화 및 삶의 질 제고를 위한 그 역할이 더욱 중요해질 것으로 예상된다. 나아가 재가 노인돌봄 영역에 디 지털 기술을 어떠한 방식으로 활용해야 할 것인지에 대한 면밀한 검토가 필 요한 시점이라 할 수 있다. 이에 본 연구는 AI기술을 활용한 선행연구들을 통하여 노인돌봄 서비스의 범주가 어느 정도까지 연구되어 있는지 살펴보고 현장에서 접근할 수 있는 실질적 개선방안을 도출하고자 한다.
        6,100원
        4.
        2024.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In response to the global transition towards carbon neutrality, there's an increasing emphasis on sustainable energy solutions, with offshore wind power playing a crucial role, especially in South Korea. This study presents an AI-based safety management system specifically designed for offshore wind operators. At the heart of this system is a machine learning algorithm that processes sensor data to automatically recognize human behavior and improve the accuracy of predicting worker actions and conditions. Such predictive analytics not only refines the analysis of behavioral patterns, but also increases the effectiveness of accident prevention. The results of this research are expected to significantly improve safety measures in offshore wind facilities and further sustainable energy initiatives.
        4,000원
        5.
        2024.04 구독 인증기관·개인회원 무료
        Due to climate change and the rise in international transportation, there is an emerging potential for outbreaks of mosquito-borne diseases such as malaria, dengue, and chikungunya. Consequently, the rapid detection of vector mosquito species, including those in the Aedes, Anopheles, and Culex genera, is crucial for effective vector control. Currently, mosquito population monitoring is manually conducted by experts, consuming significant time and labor, especially during peak seasons where it can take at least seven days. To address this challenge, we introduce an automated mosquito monitoring system designed for wild environments. Our method is threefold: It includes an imaging trap device for the automatic collection of mosquito data, the training of deep-learning models for mosquito identification, and an integrated management system to oversee multiple trap devices situated in various locations. Using the well-known Faster-RCNN detector with a ResNet50 backbone, we’ve achieved mAP (@IoU=0.50) of up to 81.63% in detecting Aedes albopictus, Anopheles spp., and Culex pipiens. As we continue our research, our goal is to gather more data from diverse regions. This not only aims to improve our model’s ability to detect different species but also to enhance environmental monitoring capabilities by incorporating gas sensors.
        6.
        2024.03 구독 인증기관·개인회원 무료
        최근, 국토교통부에서 시행한 “국가 보행교통 실태조사”로 인해 보행안전과 보행환경에 대한 중요성이 증가하고 있으며, 전반적으로 대로에서는 보행환경이 양호하나 생활도로에서는 보도가 미설치되거나 보도폭이 협소하여 보행환경이 미흡하고 보행 만족도도 낮은 것으며 생활도로의 약 34%가 유효보도폭 기준을 충족하지 못하고 있다고 조사되었다. 국가 주요 사회간접자본(SOC)인 도로, 교량, 터 널, 공공건물, 환승센터 등에 비하여 상대적으로 보행공간을 대상으로한 정보화 속도가 늦어 정보화 연구개발에 대한 추진이 시급한 실정이다. 이에 정부에서도 국가공간정보정책 기본계획에 따른 국가공간정보정책 시행계획이 확정되어 신산업 기반으로서의 역할과 안전한 시설관리를 위한 디지털 트윈 관련 기술개발 등에 투자를 확대하고, 디지털 트윈 등의 기반 정보인 고정밀 공간정보 생산 등 에 중점적으로 투자하고 있다. 현재 한국건설기술연구원, 서울시, 경기도 등에서 활용하고 있는 조사장비(PES, KRISS)는 도로포장(차 도)에서 상태 모니터링을 진행하고 있으나 이와 같은 장비들은 고가의 장비들로 실질적으로 사용하기에는 어려움이 있다. 또한, 보행 도로에서는 상태 모니터링을 수집할 장비가 없기 때문에, 보행 공간 경사, 노면 상태 등을 측정ㆍ수집하는 방법은 인력에게 의존해왔 다. 또한, 현재 보행자도로에 대한 서비스수준 산정 방식은 한국도로용량편람(2013)의 보행자시설편에서 제공하고 있는 산정 방식으로 도로용량편람에서 제시하는 보행자도로의 분석 방법을 적용하여 서비스수준을 산출할 경우, 차량과 동일한 교통량-속도-밀도 관계에 의존하여 산출하기 때문에 현실적인 보행자도로의 서비스수준을 반영하지 못하고 있는 실정이다. 이러한 문제로 인해 보행공간에 대 한 이용자의 안전 및 편의성에 대한 연구가 미흡한 상황이다. 따라서, 본 연구는 모바일매핑시스템(Mobile Mapping System)과 인공지 능(AI), 무인비행장치(Drone)를 활용한 보행공간 상태 모니터링 시스템 구축 방안을 제시하고자 한다.
        7.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this research, a new Test and Evaluation (T&E) procedure for defense AI systems is proposed to fill the existing gap in established methodologies. This proposed concept incorporates a data-based performance evaluation, allowing for independent assessment of AI model efficacy. It then follows with an on-site T&E using the actual AI system. The performance evaluation approach adopts the project promotion framework from the defense acquisition system, outlining 10 steps for R&D projects and 9 steps for procurement projects. This procedure was crafted after examining AI system testing standards and guidelines from both domestic and international civilian sectors. The validity of each step in the procedure was confirmed using real-world data. This study's findings aim to offer insightful guidance in defense T&E, particularly in developing robust T&E procedures for defense AI systems.
        4,000원
        8.
        2023.11 구독 인증기관·개인회원 무료
        The operation time of a disposal repository is generally more than one hundred years except for the institutional control phase. The structural integrity of a repository can be regarded as one of the most important research issues from the perspective of a long-term performance assessment, which is closely related to the public acceptance with regard to the nuclear safety. The objective of this study is to suggest the methodology for quantitative evaluation of structural integrity in a nuclear waste repository based on the adaptive artificial intelligence (AI), fractal theory, and acoustic emission (AE) monitoring. Here, adaptive AI means that the advanced AI model trained additionally based on the expert’s decision, engineering & field scale tests, numerical studies etc. in addition to the lab. test. In the process of a methodology development, AE source location, wave attenuation, the maximum AE energy and crack type classification were subsequently studied from the various lab. tests and Mazars damage model. The developed methodology for structural integrity was also applied to engineering scale concrete block (1.3 m × 1.3 m × 1.3 m) by artificial crack generation using a plate jacking method (up to 30 MPa) in KURT (KAERI Underground Research Tunnel). The concrete recipe used in engineering scale test was same as that of Gyeongju low & intermediate level waste repository. From this study, the reliability for AE crack source location, crack type classification, and damage assessment increased and all the processes for the technology development were verified from the Korea Testing Laboratory (KTL) in 2022.
        9.
        2023.11 구독 인증기관·개인회원 무료
        The Nuclear Export and Import Control System (NEPS) is currently in operation for nuclear export and import control. To ensure consistent and efficient control, various computational systems are either already in place or being developed. With numerous scattered systems, it becomes crucial to integrate the databases from each to maximize their utility. In order to effectively utilize these scattered computer systems, it is necessary to integrate the databases of each system and develop an associated search system that can be used for integrated databases, so we investigated and analyzed the AI language model that can be applied to the associated search system. Language Models (LM) are primarily divided into two categories: understanding and generative. Understanding Language Models aim to precisely comprehend and analyze the provided text’s meaning. They consider the text’s bidirectional context to understand its deeper implications and are used in tasks such as text classification, sentiment analysis, question answering, and named entity recognition. In contrast, Generative Language Models focus on generating new text based on the given context. They produce new textual content continuously and are beneficial for text generation, machine translation, sentence completion, and storytelling. Given that the primary purpose of our associated search system is to comprehend user sentences or queries accurately, understanding language models are deemed more suitable. Among the understanding language models, we examined BERT and its derivatives, RoBERTa and DeBERTa. BERT (Bidirectional Encoder Representations from Transformers) uses a Bidirectional Transformer Encoder to understand the sentence context and engages in pre-training by predicting ‘MASKED’ segments. RoBERTa (A Robustly Optimized BERT Pre-training Approach) enhances BERT by optimizing its training methods and data processing. Although its core architecture is similar to BERT, it incorporates improvements such as eliminating the NSP (Next Sentence Prediction) task, introducing dynamic masking techniques, and refining training data volume, methodologies, and hyperparameters. DeBERTa (Decoding-enhanced BERT with disentangled attention) introduces a disentangled attention mechanism to the BERT architecture, calculating the relative importance score between word pairs to distribute attention more effectively and improve performance. In analyzing the three models, RoBERTa and DeBERTa demonstrated superior performance compared to BERT. However, considering factors like the acquisition and processing of training data, training time, and associated costs, these superior models may require additional efforts and resources. It’s therefore crucial to select a language model by evaluating the economic implications, objectives, training strategies, performance-assessing datasets, and hardware environments. Additionally, it was noted that by fine-tuning with methods from RoBERTa or DeBERTa based on pre-trained BERT models, the training speed could be significantly improved.
        14.
        2019.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        선박은 충돌방지를 위해 해상충돌예방규칙에 의해 운항한다. 하지만 다수의 선박이 동시에 운항하는 특수상황 시에는 해상충 돌예방규칙을 적용하기 곤란하며 이때는 운항자의 개인능력에 의한다. 이러한 경우 해상교통관제를 통한 교통상황 관리가 필요하다. 이에 전 세계적으로 VTS(Vessel Traffic Services)를 통해 해상교통이 관리되고 있으며 운용 방법은 관제요원이 VTS 시스템을 이용하여 위험상황을 판단하고 통신시설을 이용하여 선박들에게 안전운항을 권고한다. 이 연구에서는 기존 방법에 AI(Artificial Intelligence) 기법을 추가하여 운항자의 관점에서 위험상황을 판단하는 방법에 대해 고찰한다. 또한, 관제 효율성 증대를 위해 AR(Augmented Reality)기법을 추가한 해상교통안전모니터링 시스템에 대해 설명한다. 이 시스템은 위험상황 및 위험 우선순위 예측이 정량적으로 가능하여 복잡한 교통상황시 실제 운항자가 충돌회피하는 방법과 동일한 순차적 위험상황 해소가 가능하다. 특히, 위험상황을 관제요원의 관점뿐만 아니라 각 선박의 운항자의 관점에서 분석할 수 있어 기존의 방법보다 실제적이다. 또한, 분석결과를 통해 정량적인 위험수역 파악이 가능하여 충돌회피를 위한 권고항로 지원이 가능하다. 결과적으로 이 시스템은 해상교통상황이 복잡한 해역에서의 선박간 충돌방지에 도움이 될 것이다. 특히, 해양분야 제4차 산업혁명에 주요한 분야를 차지하는 자율운항선박에 충돌방지 기능으로 사용될 수 있을 것이다.
        4,000원
        16.
        2018.09 KCI 등재 구독 인증기관·개인회원 무료
        대의제는 익히 대화와 토론을 통한 공공의 이익 판단을 위하여 고안된 정치제도이다. 공공의 이익은 ‘결정’ 되거나 ‘발견’ 되어 진다. 결정되는 공익은 가치관의 차이에 의거 극단적인 대립 속에서 다수결의 원칙으로 정해지는 것이고 발견되는 공익은 숙의 없이 공익이 발견되는 경우와 숙의가 반드시 필요한 경우로 나뉜다. AI는 이 세 가지 유형 중에서 숙의가 필요한 경우에 가장 유용하게 사용될 수 있다. 현재에도 대의제의 핵심 요소인 선거를 통하여 선출된 대표자들이 공공의 이익을 판단을 돕기 위한 여러 가지 제도와 장치들이 구성되어 있다. 대통령의 직무를 돕기 위해 대통령의 인사권이 인정되는 ‘임명직’ 공직자나 국회의원의 공공의 이익 판단을 위해 국민 세금으로 운영되는 국회예산정책처, 국회입법조사처 등의 조사기관들이 그것이다. 이와 같이 최종 공익결정 권한이 없는 중간 판단자와 공익 결정의 권한이 있는 결정 주체 모두에게 AI는 유용할 수 있다. 물론, 대표를 선출하지 않는 (직접)민주주의 하에서도 AI는 기능할 수 있다. AI가 제공한 정보로 가부를 묻는 실시간 국민투표를 실시할 수 있는 기술의 발전을 기대할 수 있기 때문이다. 다만, 이와 같은 경우에는 가부를 묻는 의제의 선정을 사람이 아닌 AI가 맡기 때문에 실질적으로는 AI가 사람을 지배하는 상황으로 변질 될 수 있는 위험성도 매우 크다. 한 발 더 나아가 AI가 의제를 결정하고 중간 판단도 하며 최종 공익 결정도 AI가 할 경우 사람은 주권을 포기하거나 강탈당하거나 양자 중에 선택해야 한다. 물론 이와 같은 경우는 헌법적으로 용인되지 않는다. 그러나 이에 앞서 필수적으로 고려해야 하는 인공지능의 특징이 있다. 대부분의 사람들은 사람에 비하여 훨씬 AI가 ‘객관적’이라 믿는다. 하지만, AI는 어떤 알고리즘을 통하여 학습하는가에 따라서 완벽하게 다른 결론을 ‘객관적’으로 보이도록 할 수 있다. AI가 입법과정을 다룸에 있어서 사람만큼이나 편견이 생겨 그 편향성이 강화된다면 AI에게 객관성을 기대하기 어렵다. 편향성을 가진 인공지능이 의제를 결정하고 중간판단에도 개입하고 최종 공익 결정도 누군가에 의해 의도적인 알고리즘 조작을 통해 가능하다면 그것이 우리 인류가 대의제를 고안한 근본 원칙에 맞는 것인가에 대해 동의할 수 없음은 자명하다. 이것이 AI가 발전하면 서도 궁극적으로 공공의 이익의 최종 판단을 합의제 의사결정 기구인 국회에서 ‘사람’으로 구성된 국회의원이 해야만 하는 이유이다. 객관적일 것이라 기대하는 AI도 우리만큼 편향적일 수 있기에 우리가 마지막으로 기댈 수 있는 것은 ‘불완전한 인간’들의 숙의를 통한 공익 추구뿐이다.