To improve the lithium-ion battery performance and stability, a conducting polymer, which can simultaneously serve as both a conductive additive and a binder, is introduced into the anode. Water-soluble polyaniline:polystyrene sulfonate (PANI:PSS) can be successfully prepared through chemical oxidative polymerization, and their chemical/mechanical properties are adjusted by varying the molecular weight of PSS. As a conductive additive, the PANI with a conjugated double bond structure is introduced between active materials or between the active material and the current collector to provide fast and short electrical pathways. As a binder, the PSS prevents short circuits through strong π‒π stacking interaction with active material, and it exhibits superior adhesion to the current collector, thereby ensuring the maintenance of stable mechanical properties, even under high-speed charging/discharging conditions. Based on the synergistic effect of the intrinsic properties of PANI and PSS, it is confirmed that the anode with PANI:PSS introduced as a binder has about 1.8 times higher bonding strength (0.4 kgf/20 mm) compared to conventional binders. Moreover, since active materials can be additionally added in place of the generally added conductive additives, the total cell capacity increased by about 12.0%, and improved stability is shown with a capacity retention rate of 99.3% even after 200 cycles at a current rate of 0.2 C.
Silicon-based anode materials have attracted significant interest because of their advantages, including high theoretical specific capacity (~4,200 mAh/g), low working potential (0.4 V vs Li/Li+), and abundant sources. However, their significant initial capacity loss and large volume changes during cycling impede the application of silicon-based anodes in lithium-ion batteries. In this work, we propose a silicon oxide (SiOx) anode material for lithium-ion batteries produced with a magnesio-thermic reduction (MTR) process adopting Boryeong mud as a starting material. Boryeong mud contains various minerals such as clinochlore [(Mg,Fe)6(Si,Al)4O10(OH)8], anorthite (CaAl2Si2O8), illite [K0.7Al2(Si,Al)4O10(OH)2], and quartz (SiO2). The MTR process with Boryeong mud generates a mixture of amorphous silicon oxides (SiOx and SiO2), and magnesium aluminate which helps to alleviate the volume expansion of the electrode during charge/discharge. To observe the effects of these oxides, we conducted various analyses including X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-Transformation infrared spectroscopy (FT-IR), Brunauer-Emmett-Teller (BET) and cyclic voltammetry (CV) galvanic cell testing. The amorphous SiO2 and MgAl2O4 suppressed the volume expansion of the silicon-based anode, and excellent cycle performance was achieved as a result.
Graphene has been extensively investigated as a host material for Li metal anodes owing to its light weight, high electrical conductivity, high surface area, and exceptional mechanical rigidity. Many studies have focused on assembling twodimensional (2D) graphene sheets into three-dimensional (3D) forms, such as lamination, spheres, and carbon nanotubes; however, little attention has been paid to the technology of modifying 2D graphene sheets. Herein, nanoperforated graphene (NPG) was fabricated through a relatively straightforward process employing metal oxide catalysts based on aqueous solutions. Nanoperforations exhibited a size of approximately 5 nm and were introduced on the graphene sheet and lithiophilic carbonyl groups (C = O) at the edges, facilitating the rapid diffusion of Li+ and lowering the Li nucleation overpotential. In comparison to the reduced graphene oxide (RGO) host, the NPG host exhibited a lower lithium nucleation overpotential and a stable overpotential of ~ 30 mV for over 150 cycles as a stable host structure as a Li metal anode for Li metal batteries.
This study comprehensively investigates three types of graphite materials as potential anodes for potassium-ion batteries. Natural graphite, artificial carbon-coated graphite, and mesocarbon microbeads (MCMB) are examined for their structural characteristics and electrochemical performances. Structural analyses, including HRTEM, XRD, Raman spectroscopy, and laser particle size measurements, reveal distinct features in each graphite type. XRD spectra confirm that all graphites are composed of pure carbon, with high crystallinity and varying crystal sizes. Raman spectroscopy indicates differences in disorder levels, with artificial carbon-coated graphite exhibiting the highest disorder, attributed to its outer carbon coating. Ex-situ Raman and HRTEM techniques on the electrodes reveal their distinct electrochemical behaviors. MCMB stands out with superior stability and capacity retention during prolonged cycling, attributed to its unique spherical particle structure facilitating potassium-ion diffusion. The study suggests that MCMB holds promise for potassium-ion full batteries. In addition, artificial carbon-coated graphite, despite challenges in hindering potassium-ion diffusion, may find applications in commercial potassium-ion battery anodes with suitable coatings. The research contributes valuable insights into potassiumion battery anode materials, offering a significant extension to the current understanding of graphite-based electrode performance.
This study prepares highly porous carbon (c-fPI) for lithium-ion battery anode that starts from the synthesis of fluorinated polyimide (fPI) via a step polymerization, followed by carbonization. During the carbonization of fPI, the decomposition of fPI releases gases which are particularly from fluorine-containing moiety (–CF3) of fPI, creating well-defined microporous structure with small graphitic regions and a high specific surface area of 934.35 m2 g− 1. In particular, the graphitic region of c-fPI enables lithiation–delithiation processes and the high surface area can accommodate charges at electrolyte/electrode interface during charge–discharge, both of which contribute electrochemical performances. As a result, c-fPI shows high specific capacity of 248 mAh g− 1 at 25 mA g− 1, good rate-retention performance, and considerable cycle stability for at least 300 charge–discharge cycles. The concept of using a polymeric precursor (fPI), capable of forming considerable pores during carbonization is suitable for the use in various applications, particularly in energy storage systems, advancing materials science and energy technologies.
Efficient Li-ion transport in anode materials is paramount for electric vehicles (EVs) and energy storage systems. The rapid charging demands of EVs can lead capacity decay at high charging rate. To overcome this challenge, we focus on graphite geometric characteristics that effect to interparticle space. We interpret the correlation between the utilization of the electrode and the interparticle space where solvated Li-ion transports in liquid electrolyte. To introduce variability into this space, two main coke precursors, coal cokes and petroleum cokes, were prepared and further categorized as normal cokes and needle cokes. Manufactured graphite samples were observed with distinct geometric characteristics. In this study, investigates the impact of these geometric variations on electrochemical performance, emphasizing rate capability and cycle stability during fast charging. By analyzing the transport properties of electrochemical species within these graphite samples, we reveal the critical role of morphology in mitigating concentration polarization and side reaction, such as Li-plating. These findings offer promising contribution for the development of advanced anode materials, in fast-charging condition in Li-ion.
Disposable masks manufactured in response to the COVID-19 pandemic have caused environmental problems due to improper disposal methods such as landfilling or incineration. To mitigate environmental pollution, we suggest a new process for recycling these disposable masks for ultimate application as a conductive material in lithium-ion batteries (LIBs). In our work, the masks were chemically processed via amine functionalization and sulfonation, followed by carbonization in a tube furnace in the Ar atmosphere. The residual weight percentages, as evaluated by thermogravimetric analysis (TGA), of the chemically modified masks were 30.6% (600 °C, C-600), 24.5% (750 °C, C-750), and 24.1% (900 °C, C-900), respectively, thereby demonstrating the possibility of using our proposed method to recycle masks intended for disposal. The electrochemical performance of the fabricated carbonized materials was assessed by fabricating silicon/graphite (20:80) anodes incorporating these materials as additives for use in LIBs. Using a coin-type half-cell system, cells with the aforementioned carbonized materials exhibited initial capacities of 553 mAh/g, 607 mAh/g, and 571 mAh/g, respectively, which are comparable to those of commercial Super P (591 mAh/g). Cell cycled at the rate of 0.33 C with C-600, C-750, and C-900 as additives demonstrated capacity retention of 53.2%, 47.4%, and 51.1%, respectively, compared with that of Super P (48.3%). In addition, when cycled at rates from 0.2 to 5 C, the cells with anodes containing the respective additives exhibited rate capabilities similar to those of Super P. These results might be attributable to the unique surface properties and morphologies of the carbonized materials derived from the new recycling procedure, such as the size and number of heteroatoms on the surface.
A carbon matrix for high-capacity Li/Na/K-alloy-based anode materials is required because it can effectively accommodate the variation in the volume of Li/Na/K-alloy-based anode materials during cycling. Herein, a nanostructured porous polyhedral carbon (PPC) was synthesized via a simple two-step method consisting of carbonization and selective acid etching, and their electrochemical Li/Na/K-ion storage performance was investigated. The highly uniform PPC, with an average particle size of 800 nm, possesses a porous structure and large specific surface area of 258.82 cm2 g– 1. As anodes for Li/Na/K-ion batteries (LIBs/NIBs/KIBs), the PPC matrix exhibited large initial reversible capacity, fast rate capability (LIB: ~ 320 mAh g– 1 at 3C; NIB: ~ 140 mAh g– 1 at 2C; KIB: ~ 110 mAh g– 1 at 2C), better cyclic performance (LIB: ~ 550 mAh g– 1; NIB: ~ 210 mAh g– 1; KIB: ~ 190 mAh g– 1 at 0.2C over 100 cycles), high ionic diffusivity, and excellent structural robustness upon cycling, which demonstrates that the PPC matrix can be highly used as a carbon matrix for high-capacity alloy-based anode materials for LIBs/NIBs/KIBs.
The high level of lithium storage in synthetic porous carbons has necessitated the development of accurate models for estimating the specific capacity of carbon-based lithium-ion battery (LIB) anodes. To date, various models have been developed to estimate the storage capacity of lithium in carbonaceous materials. However, these models are complex and do not take into account the effect of porosity in their estimations. In this paper, a novel model is proposed to predict the specific capacity of porous carbon LIB anodes. For this purpose, a new factor is introduced, which is called normalized surface area. Considering this factor, the contribution of surface lithium storage can be added to the lithium stored in the bulk to have a better prediction. The novel model proposed in this study is able to estimate the lithium storage capacity of LIB anodes based on the porosity of porous carbons for the first time. Benefiting porosity value (specific surface area) makes the predictions quick, facile, and sensible for the scientists and experts designing LIBs using porous carbon anodes. The predicted capacities were compared with that of the literature reported by experimental works. The remarkable consistency of the measured and predicted capacities of the LIB anodes also confirms the validity of the approach and its reliability for further predictions.
For zinc-air batteries, there are several limitations associated with zinc anodes. The self-discharge behavior of zincair batteries is a critical issue that is induced by corrosion reaction and hydrogen evolution reaction (HER) of zinc anodes. Aluminum and indium are effective additives for controlling the hydrogen evolution reaction as well as the corrosion reaction. To enhance the electrochemical performances of zinc-air batteries, mechanically alloyed Zn-Al and Zn-In materials with different compositions are successfully fabricated at 500rpm and 5h milling time. Investigated materials are characterized by X-ray diffractometer (XRD), field emission scanning electron microscope (FE-SEM), and energy dispersive spectrometer (EDS). Alloys are investigated for the application as novel anodes in zinc-air batteries. Especially, the material with 3 wt% of indium (ZI3) delivers 445.37 mAh/g and 408.52 mAh/g of specific discharge capacity with 1 h and 6 h storage, respectively. Also, it shows 91.72 % capacity retention and has the lowest value of corrosion current density among attempted materials.
In the automotive industry, the platinum titanium anodes (Pt/Ti anode) play a significant role in electroplating of chromium coating on the vehicle’s shock absorber piston rod. In this paper, the structure of Pt/Ti anode was designed to obtain high quality and save time for the electroplating process. The structure of anode was designed in 2D & 3D modeling and analyzed by CATIA and ABAQUS program, respectively. The structural modeling of the anode was analyzed and carried out using a finite element method (FEM) by applied various loads. The manufacture anodes were installed in an electroplating bath in order to test the efficiency of chromium coating on shock absorber piston rod and safety of anode structure. The results presented indicate that the structural analysis is safe after applied loads due to the allowable stress is higher than the maximum equivalent stress about 4 times, and the chromium coating test obtained high-efficiency results.
High-quality and solution processable graphene sheets are produced by a simple electrochemical exfoliation method and employed as a high-power anode for lithium-ion batteries (LIBs). The electrochemically exfoliated graphene (EEG) composed of a few layers of graphene sheets, have low oxygen content and high C/O ratio (~ 14.9). The LIBs with EEG anode exhibit ultrafast lithium storage and excellent cycling stability, but low initial efficiency. The excellent rate capability and cycling stability are attributed to the favorable structural and chemical properties of the EEG, but the large irreversibility needs to be overcome for practical applications.
This study interrogated multi-layer heterojunction anodes were interrogated for potential applications to water treatment. The multi-layer anodes with outer layers of SnO2/Bi2O3 and/or TiO2/Bi2O3 onto IrO2/Ta2O5 electrodes were prepared by thermal decomposition and characterized in terms of reactive chlorine species (RCS) generation in 50 mM NaCl solutions. The IrO2/Ta2O5 layer on Ti substrate (Anode 1) primarily served as an electron shuttle. The current efficiency (CE) and energy efficiency (EE) for RCS generation were significantly enhanced by the further coating of SnO2/Bi2O3 (Anode 2) and TiO2/Bi2O3 (Anode 3) layers onto the Anode 1, despite moderate losses in electrical conductivity and active surface area. The CE of the Anode 3 was found to show the highest RCS generation rate, whereas the multi-junction architecture (Anode 4, sequential coating of IrO2/Ta2O5, SnO2/Bi2O3, and TiO2/Bi2O3) showed marginal improvement. The microscopic observations indicated that the outer TiO2/Bi2O3 could form a crack-free layer by an incorporation of anatase TiO2 particles, potentially increasing the service life of the anode. The results of this study are expected to broaden the usage of dimensionally stable anodes in water treatment with an enhanced RCS generation and lifetime.
Pollution of chloride ion-reinforced concrete can trigger active corrosion processes that reduce the useful life of structures. Multifunctional materials used as a counter-electrode by electrochemical techniques have been used to rehabilitate contaminated concrete. Cement-based pastes added to carbonaceous material, fibers or dust, have been used as an anode in the non-destructive Electrochemical Chloride Extraction (ECE) technique. We studied the performance of the addition of Carbon Fiber (CF) in a cement-graphite powder base paste used as an anode in ECE of concretes contaminated with chlorides from the preparation of the mixture. The experimental parameters were: 2.3% of free chlorides, 21 days of ECE application, a Carbon Fiber Volume Fraction (CFVF) of 0.1, 0.3, 0.6, 0.9%, a lithium borate alkaline electrolyte, a current density of 4.0 A / m2 and a cement/graphite ratio of 1.0 for the paste. The efficiency of the ECE in the traditional technique using metal mesh as an anode was 77.6% and for CFVF of 0.9% it was 90.4%, with a tendency to increase to higher percentages of the CFVF in the conductive cement-graphite paste, keeping the pH stable and achieving a homogeneous ECE in the mass of the concrete contaminated with chlorides.
The present work reports a systematic study of using carboxymethylated cellulose (CMC) as water-bornebinder to produce Li4Ti5O12-based anodes for manufacture of high rate performance lithium ion batteries. When theLTO-to-CB-to-CMC mass ratio is carefully optimized to be 8:1:0.57, the special capacity of the resulting electrodes is144 mAh·g−1 at 10 C and their capacity retention was 97.7% after 1000 cycles at 1C and 98.5% after 500 cycles at5C, respectively. This rate performance is comparable or even better than that of the electrolytes produced using con-ventional, organic, polyvinylidene fluoride binder.
nanotubes were successfully synthesized using an electrospinning technique followed by calcination in air. The nanotubes were the single phase nature of and consisted of approximately 14 nm nanocrystals. SEM and TEM characterizations demonstrated that uniform hollow fibers with an average outer diameter of around 124 nm and wall thickness of around 25 nm were successfully obtained. As anode materials for lithium ion batteries, the nanotubes exhibited excellent cyclability and reversible capacity of up to 25 cycles at as compared to nanoparticles with a capacity of . Such excellent performance of the nanotube was related to the one-dimensional hollow structure which acted as a buffer zone during the volume contraction and expansion of Sn.
온실 효과로 인한 지구온난화 현상은 전세계적으로 문제가 되고 있고, 온실효과를 일으키는 주원인은 온실가스이다. 온실 가스는 에너지 분야에서 가장 많이 배출되며, 2014년 기준 배출량의 86.8%를 차지한다. 배출 국가 온실가스 감축 의무부담에 관한 대응을 위해 에너지 사용 절감에 대한 전략이 동반되어 짐으로서, 에너지 절감 기술 및 소재 개발이 필요시 되었다. 국내 에너지 다소비 산업의 하나인 전해제련 공정 또한 여기서 벗어나지 못한다. 전해제련 공정은 수용액 전해조에 전극을 담그고 일정한 전류 혹은 전압을 가하여 수용액 속의 이온을 금속으로 석출하는 공정으로, 제조경비 중 전력비 비중이 높은 대표적인 에너지 다소비산업이다. 대표적 전해제련 생산품인 아연(Zn)은 최근 국제가격 하향안정화 추세로 국내기업의 글로벌 시장경쟁력 악화가 예상되며 이에 따른 가격 경쟁력 확보 필요성이 증가하였다. 본 연구에서는 Ir-Ta-Sn-Pd/Ti 전극을 이용해 아연 전해제련 시 사용되는 Pb 전극과 비교 하였고, 전류 밀도 500A/m2 조건에서 전위차 변화를 통해 전력소비 감소량을 예측하였다. 또한 아연 회수량 및 전극 표면 부식성 또한 관찰하여 Pb 전극 대체 효과를 확인하였다.
Corrosion of reinforcing steel leading to structural deterioration and failure of reinforced concrete structures is a serious problem for port and highway agencies, and facility owners. Galvanic anodes have been used to extend the service lives of concrete structures since late 1990s. Embedded Zinc sacrificial anodes have been included in patch repairs of steel reinforced concrete structural elements suffering from corrosion since the mid-nineties. The anodes installed in a UK bridge in 1999 have been monitored, and 10-year data monitored data will be discussed. Galvanic anodes have been used widely in patch repair since then. Recognizing the inadequate monitoring of impressed current cathodic protection that will make it in-effective, distributed galvanic anodes were developed in early 2000s to address the global corrosion issues in concrete structures. Many departments of Transportation (DOTs) and Ministries of Transportation tried and monitored the anodes initially for a few years and considered the trials successes, and have widely used galvanic anodes in bridge decks, abutments, pile jackets and marine structures since then. This paper introduces different levels of corrosion protection offered by galvanic anodes and the various galvanic anode systems used in concrete structures. Various applications of the galvanic systems to extended service lives of concrete structures are presented.