검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 67

        1.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        When compact HVAC is applied to a building, various variables exist in performing the functions of air conditioning, ventilation, and hot water supply of the building, and various experimental and empirical evaluations according to the energy performance evaluation method of the building occur. We are going to present research data for preparing domestic evaluation standards for energy evaluation methods for compact HVAC and zero-energy buildings to be applied in the future.
        4,000원
        3.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, heat exchangers used in data center and building air-conditioners were tested according to the type of heat exchangers to select them for commercial use. The experiment was performed three samples, one micro channel heat exchanger, the same volume oval coil and the same performance oval coil. The experiment conducted under actual operation conditions in the data center and building. Micro-channel heat exchanger has lower air side pressure drop and higher capacity per volume than oval coil. It may be advantageous when the installation small space or the little design static pressure in the fan, such as in-row systems or CRAC installed in data center.
        4,000원
        4.
        2019.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Indirect evaporative coolers (IECs) are widely used for cooling of outdoor air in building air-conditioning and for cooling of indoor air in data center air-conditioning. However, for each case, the inlet air temperature and humidity condition to IEC are different, which may yield different cooling efficiency. In this study, tests were conducted at the two air conditions using two IEC samples having different channel pitch (3 mm × 5 mm, 5 mm × 5 mm). Results showed that the efficiencies of the 3 mm × 5 mm sample were 12~32% larger than those of the 5 mm × 5 mm sample due to 25% larger heat transfer area and the usage of smaller diameter channel. The efficiency was 10% larger at the data center condition than at the building condition. The reason may be attributed to a larger absolute humidity difference between the liquid film and the air at the data center condition. At the same air velocity, the pressure drops at the wet channel were 64~128% larger than those at the dry channel due to the presence of liquid film at the wet channel. Comparison of the data with predictions by the analytical model revealed that both the efficiency and the pressure drop were over-predicted. Possible reason may be the simplification of the channel geometry and the assumption of fully developed flow, which may be improved in the future.
        4,000원
        6.
        2018.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A base isolation system is widely used to reduce seismic responses of low-rise buildings. This system cannot be effectively applied to high-rise buildings because the initial stiffness of the high-rise building with the base isolation system maintains almost the same as the building without the base isolation system to set the yield shear force of the base isolation system larger than the design wind load. To solve this problem, the mid-story isolation system was proposed and applied to many buildings. The mid-story isolation system has two major objectives; first to reduce peak story drift and second to reduce peak drift of the isolation story. Usually, these two objectives are in conflict. In this study, a hybrid mid-story isolation system for a tall building is proposed. A MR (magnetorheological) damper was used to develop the hybrid mid-story isolation system. An existing building with mid-story isolation system, that is “Shiodome Sumitomo Building” a high rise building having a large atrium in the lower levels, was used for control performance evaluation of the hybrid mid-story isolation system. Fuzzy logic controller and genetic algorithm were used to develop the control algorithm for the hybrid mid-story isolation system. It can be seen from analytical results that the hybrid mid-story isolation system can provide better control performance than the ordinary mid-story isolation system and the design process developed in this study is useful for preliminary design of the hybrid mid-story isolation system for a tall building.
        4,000원
        7.
        2018.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        One of engineered woods, glued laminated timber (GLT), can provide a constant level of performance and desired strength even if the quality of wood is low. Due to this fact, there is a growing interest in GLT using domestic species and related research has been carried out continuously. In addition, GLT is popularly being applied to the long-span or high-rise structures overseas. However, KBC 2016 does not allow the engineered woods to be used for middle and high-rise buildings by limiting height. Therefore, a proper design procedure and rationale should be clearly presented by the help of performance-based seismic design. With this background, the goal of this study is to establish a specific procedure for design of a 9-story building with RC shear walls and GLT frames according to the performance-based design of KBC 2016. The performance objectives were set according to KBC and the acceptance criteria for each goal were defined. The RC shear walls and GLT frames were designed by concrete and wood structure requirements, respectively. Analytical models were developed to reflect their nonlinear features, and both nonlinear static and dynamic analyses were conducted. Performance evaluation results showed that the shear walls have insufficient shear strength, so they were re-designed. Consequently, it has been confirmed that GLT frames can be applied to a 9-story office building with the assistance of RC shear walls and performance-based seismic design.
        4,000원
        8.
        2018.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        ‘Seismic Performance Evaluation Method for Existing Buildings (2013)’ developed in accordance with the overseas guidelines ASCE 41 - 06 is the most widely used procedure among domestic seismic performance evaluation guidelines in Korea. However, unlike ASCE 41 - 06, it stipulates that the final performance should be derived as the gravity load distribution ratio of the lateral force resistance system in the guideline. Therefore, in the case of a dual steel structure system with slender braces, where the internal moment frame is mostly responsible for the gravity load, the evaluation of slender braces based on gravity load distribution ratio is difficult to be achieved. In this research, we propose an objective evaluation process for such system by evaluating seismic performance for large-scale factory facilities as an example.
        4,200원
        9.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 4연동 벤로형 유리온실의 냉·난방 부하를 고려한 PV 시스템의 적정 패널 설치 면적을 도출하기 위하여 BES 기법을 이용하여 온실 및 PV 시스템의 에너지 모델을 설계하였으며 동적 에너지 시뮬레이션을 수행하였다. 대상 작물은 파프리카로 선정하였으며 작물의 적정생육온도를 고려하여 냉·난방장치 및 환기장치의 가동조건을 설정하였다. 2012년부터 2016년까지 총 5년 동안의 기간별 냉·난방부하 및 최대 냉·난방 부하를 환 기팬의 환기량 조건 별로 분석을 실시하였다. 온실의 냉 ·난방 부하 산정과 함께 PV 시스템의 설치 각도에 따른 전력 생산량을 분석하였으며 신재생에너지 공급의무비율을 적용하여 최적 PV 시스템 설계 방안을 도출하였다. 환기팬의 환기량 60AE·hr-1 조건에서 대상 온실의 기간 평균 냉방 부하로 인한 전력 소모량은 174,310kWh, 기간 평균 난방 부하로 인한 전력 소모량은 458,903kWh 로 총 633,213kWh의 전력 소모량이 산정되었다. PV 시스템은 설치 각도를 30o로 설정하는 조건에서 가장 높은 전력 생산량이 나타났으며 월별 최적 각도를 적용하는 조건에서는 고정형 PV 시스템보다 약 5.7% 많은 전력 을 생산하는 것으론 산정 되었다. 최종적으로 대상 온실에 적합한 PV 시스템 패널 면적을 도출한 결과, 고정형 PV 시스템은 521m2의 패널이 필요한 것으로 산정되었고, 가변형 PV 시스템의 경우 494m2의 패널이 필요한 것으로 산정되었다. 본 연구를 통하여 4연동 벤로형 유리온실의 냉·난방 부하를 고려한 PV 시스템의 필요 패널 설치 면적을 도출할 수 있었으며 PV 시스템의 온실 적용 가능성 및 경 제성 평가의 기초 자료로 활용 가능할 것으로 판단된다. 한편, 본 연구에서는 작물 특성 데이터를 확보하지 못하여 작물의 에너지 교환을 고려하지 않았다. 보다 정확한 결과를 도출하기 위해서는 현장 실험 데이터에 기반을 둔 추가 연구가 필요할 것으로 판단된다.
        4,000원
        10.
        2017.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The building which are essential for disaster recovery is classified as a special seismic use group. Especially, achievement of seismic performance is very important for the hospital, so the hospital should be able to maintain its function during and right after an earthquake without significant damage on both structural and non-structural elements. Therefore, this study aimed at checking the seismic performance of a hospital building, but which was limited to structural elements. For the goal, a plan with a configuration of general hospitals in Korea was selected and designed by two different seismic-force-resisting systems. In analytical modeling, the shear behavior of the wall was represented by three inelastic properties as well as elastic. Nonlinear dynamic analyses were conducted to evaluate the performance of structural members. The result showed that the performance of shear walls in the hospital buildings was not satisfied regardless of the seismic-force-resisting systems, while the demands on the beams and columns did not exceed the capacities. This is the result of only considering the shear of the wall as the force-controlled action. When the shear of the wall was modeled as inelastic, the walls were yielded in shear, and as the result, the demands for frames were increased. However, the increase did not exceed the capacities of the frames members. Consequently, since the performance of walls is significant to determine the seismic performance of a hospital building, it will be essential to establish a definite method of modeling shear behavior of walls and judging their performance.
        4,000원
        11.
        2017.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The demand for skyscrapers is increasing worldwide. Until now, various lateral resistance structures have been used for lateral displacement control of high-rise buildings. An outrigger damper system has been introduced recently to improve lateral dynamic response control performance further. However, a study of outrigger damper system is yet to be sufficiently investigated. In this study, time history analysis was performed to investigate the control performance of an outrigger damper system of high-rise building under eccentric loading. To do this, an actual scale 3-dimensional tall building model with an outrigger damper system was prepared. The control performance of the outrigger damper system was evaluated by varying stiffness and damping values. On the top floor torsional angle response to the earthquake load, was greatly affected by damping value. And the displacement response was affected greatly by the stiffness value and damping value of damper system. In conclusion, it is necessary to select the proper damping and stiffness values of the outrigger damper system.
        4,000원
        12.
        2017.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study analyzed indoor and outdoor thermal performance among different types of green roofs and green walls in order to provide information for building greening. When temperature reduction effects of green roofs and green walls were compared to the control, the effects was highest at the green roof and wall treatment, followed by green wall, green roof, and the control, which means there was temperature reduction effects by building greening. Also these temperature reduction effects was influenced by outdoor weather condition such as being typically high in sunny days but not notable in rainy days. In addition temperature reduction was effective as the air temperature was up but was not influenced by wind velocity. As for directions, the west side showed the highest temperature followed by the south and east in the order. Heat flow was found greater in control than in green roof and green wall. In addition, heat flow reversal was found as time went on.
        4,000원
        13.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, seismic performance assessment has been examined for a mid-rise RC building subjected to 2016 Gyeongju earthquake occurred in Korea. For the purpose of the paper, 2D external and internal frames in each direction of the building have been employed in the present comparative analyses. Nonlinear static pushover analyses have been conducted to estimate frame capacities. Nonlinear dynamic time-history analyses have also been carried out to examine demands for the frames subjected to ground motions recorded at stations in near of Gyeongju and a previous earthquake ground motion. Analytical predictions demonstrate that maximum demands are significantly affected by characteristics of both spectral acceleration response and spectrum intensity over a wide range of periods. Further damage potential of the frames has been evaluated in terms of fragility analyses using the same ground motions. Fragility results reveal that the ground motion characteristics of the Gyeongju earthquake have little influence on the seismic demand and fragility of frames.
        4,200원
        14.
        2016.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 풍하중을 받는 건물에 설치된 다중거동 복합 감쇠장치(MHD)의 성능을 평가하고, MHD 예비설계 절차를 제안하였다. MHD에 의해 증가된 등가감쇠비와 그에 따른 건축구조기준에 근거한 응답저감계수를 예상한 후, 풍하중 스펙트럼에 의해 생성된 풍하중을 사용하여 20층 철골구조물에 대한 시간이력 해석을 수행하였다. 해석결과를 통해 얻어진 층변위 및 층간변위 평균 응답 감소율은 각각 0.585 및 0.525로, 이는 제안한 예비설계과정에서 추정된 응답감소계수 0.6과 거의 동일한 수치임을 확인하였다. 이로부터 제안된 방법을 사용하여 MHD의 제어효과를 효과적으로 평가할 수 있음을 확인하였다.
        4,000원
        15.
        2016.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        부가적인 제어장치를 사용하여 구조물 감쇠를 증가시키는 것은 건축물의 풍응답을 제어하기 위해 자주 사용되는 방법 중 하나이다. 본 연구의 목적은 TMD와 AMD의 다중모드응답 제어성능을 비교하는 것이다. 실제 AMD가 설치된 39층 건물을 사용하였으며, 이전 연구에서 시스템식별을 통해 얻어진 모드정보에 따라 수정된 수치해석모델을 사용하였다. AMD 제어력은 속도피드백, 뱅뱅 제어, LQR 알고리즘을 사용하여 결정하였다. 1차 모드의 RMS 응답을 유사한 수준으로 맞추는 조건에서 TMD와 AMD의 고차모드제 어성능을 비교하였다. 그 결과 TMD는 단일 모드에 대해서만 응답을 저감시킬 수 있었으나, AMD는 다중모드 제어가 가능함을 확인하였다.
        4,000원
        16.
        2016.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Because National Fire Safety Codes is mixed performance criteria and specification, and it defines the fire extinguish equipment type and standards that need to be installed in a building as one method. Therefore, to fully reflect the fire risk characteristics of the building, such as the wooden building there is a limit. In this study, suggested to the performance criteria drawn methodologies through fire load of wooden buildings studies, theory on performance and performance analysis to fire extinguish equipment of the wooden buildings is installed according to current fire safety codes.
        4,000원
        17.
        2016.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was to investigate the firing method of limestone in Joseon Dynasty, and analyze the physical·chemical properties of lime mortars in Joseon Dynasty. This study was to manufacture and evaluate the firing experiment and mortar of Limestone by each sort in order to reproduce the traditional lime mortars in Joseon Dynasty, and investigate the behavior to improve physical properties according to the firing method of Limestone. This study has found out that there were screening criteria and standard of appropriate firing temperature about the Limestone in Joseon Dynasty. Accordingly, this study was to improve its strength through various additives and mixture. In particular, in case of Limestone, the black and blue Limestone were preferred, and most of domestic Limestones were low grade Limestone including the clay and took ivory white or blue with low whiteness. This study has shown that the low grade Limestone was mined by the surface mining compared with the high grade Limestone as underground mining method, and could be used because it was easy to mine relatively and there was possibility that Natural Hydraulic Lime(NHL) was used with the traditional lime mortars in Joseon Dynasty.
        4,000원
        18.
        2016.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study is the compared seismic performance that are difference between the performance of structures on various site classes and beam-column connection. this analysis model was designed the previous earthquake load. To compare the performance levels of the structure was subjected to nonlinear static and nonlinear dynamic analysis. Nonlinear analysis was used to The Perform 3D program. Nonlinear static analysis was compared with the performance point and Nonlinear dynamic analysis was compared the drift ratio(%). Analysis results, the soft site class of the displacement was more increase than rock site classes of the displacement. Also The smaller the displacement was increased beam-column connection stiffness.
        4,200원
        19.
        2015.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this article, poly methyl triethoxy silane was compounded with an inorganic waterproof admixture at a certain ratio to improve the performance of gypsum products; a new type of high-efficiency compound water-proofing additive was also investigated. Furthermore, the waterproof mechanism and the various properties on the hardened gypsum plaster were investigated in detail by XRD and SEM. The results show that the intenerate coefficient of gypsum plaster increased to more than 0.9; the water absorbing rate decreased to less than 10 %. Both the bending strength and the compressive strength of gypsum plaster increased by various degrees. The intenerate coefficient reached a maximum value of 0.73 and the strength of the samples showed almost no change when 5 % cement alone was added. In this new type of the high-efficiency compound with waterproof additive, the optimal technological parameters for formulas were obtained to be: 5 % cement, 18 % mineral powder, and 0.8 % poly methyl triethoxy silane, to compound gypsum plaster. Meanwhile, the production of high performance gypsum as a building material has become possible.
        4,000원
        20.
        2014.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Performance based design(PBD) is the method to make a fire safety design against them after predicting the factors of fire risk in a building. Therefore, predicting fire risk in a building is very important process in PBD. For predicting fire risk of a building, an engineer of PBD must consider various factors such as ignition location, ignition point, ignition source, first ignited item, second ignited item, flash over, the state of door and fire suppression system. But, it is difficult to trust fire safety capacity of the design because the process in Korea' PBD is unprofessional and unreasonable. This paper had surveyed some cases of PBD that had been made in Korea to find the problems of the process to predict fire risk. And it have proposed the improvements of process to predict fire risk of a building.
        4,000원
        1 2 3 4