Accurate estimation of vehicle exhaust emissions at urban intersections is essential to assess environmental impacts and support sustainable traffic management. Traditional emission models often rely on aggregated traffic volumes or measures of average speed that fail to capture the dynamic behaviors of vehicles such as acceleration, deceleration, and idling. This study presents a methodology that leverages video data from smart intersections to estimate vehicle emissions at microscale and in real time. Using a CenterNet-based object detection and tracking framework, vehicle trajectories, speeds, and classifications were extracted with high precision. A structured preprocessing pipeline was applied to correct noise, missing frames, and classification inconsistencies to ensure reliable time-series inputs. Subsequently, a lightweight emission model integrating vehicle-specific coefficients was employed to estimate major pollutants including CO and NOx at a framelevel resolution. The proposed algorithm was validated using real-world video data from a smart intersection in Hwaseong, Korea, and the results indicated significant improvements in accuracy compared to conventional approaches based on average speed. In particular, the model reflected variations in emissions effectively under congested conditions and thus captured the elevated impact of frequent stopand- go patterns. Beyond technical performance, these results demonstrate that traffic video data, which have traditionally been limited to flow monitoring and safety analysis, can be extended to practical environmental evaluation. The proposed algorithm offers a scalable and cost-effective tool for urban air quality management, which enables policymakers and practitioners to link traffic operations with emission outcomes in a quantifiable manner.
This study analyzed the emission characteristics of major air pollutants from 97 domestic municipal solid waste incineration facilities using tele-monitoring system (TMS) data collected from 2015 to 2023. Focusing on the effects of the enforcement of enhanced national emission standards in 2019, this research examined changes in emission factors (EFs) of dust and nitrogen oxides (NOX) by facility capacity and aging level. The results showed that the average EFs for dust and NOX significantly decreased by up to 30% after enforcement (p<0.01~0.001), indicating the practical effectiveness of the strengthened standard. This trend was observed consistently across all facility sizes and aging levels, including large-scale and older facilities. In contrast, hydrogen chloride (HCl) and carbon monoxide (CO) did not show clear reductions and remained highly variable, suggesting that emission standards alone may not be sufficient for stable control. These findings demonstrate the need for optimized combustion conditions and improved post-treatment systems for pollutants such as HCl and CO. This study provides empirical evidence highlighting the importance of appropriate facility scale and systematic refurbishment cycles for stable emission reduction in municipal waste incinerators.
This study analyzed the odor contribution rate using AERMOD at odor emission facilities in an urban industrial area (North-Daejeon, Korea) where residential facilities, industrial complexes, and public environmental facilities are mixed. When comparing the average odor emission concentration by prevention facility, the multistage treatment method including oxidation and combustion was about three times more effective in reducing the concentration than the commonly used biofilter and scrubber. These results suggest the importance of management aspects of prevention facilities such as biofilters and cleaning towers to improve treatment efficiency. Currently, management of odor emission facilities is being conducted in terms of instantaneous odor concentration management. Due to the limitations of this management method, research results show that some workplaces ranked 7th in terms of momentary odor concentration level, but in terms of emissions, they soared to 2nd place, indicating that management from the perspective of emissions as well as concentration is necessary for odor management. The odor impact in the study area varies by season, but public environmental facilities have an impact of 62~76% in spring, summer, and winter, and odor emission facilities in industrial complexes have an impact of 66% in autumn. It can be inferred from these results that the odor impact of public environmental facilities would be low because they are located away from residential areas, but the results confirmed through this study showed that the concentration and emission levels of prevention facilities operated in public environmental facilities were relatively higher than those of odor-emitting facilities in industrial complexes.
This study utilized real-time particulate matter (PM10) monitoring equipment mounted on vehicles and drones to measure PM10 concentrations in industrial complexes and track potential emission sources. This research was conducted in four industrial complexes located in Gyeonggi Province and Incheon Metropolitan City (Hwaseong Songsan Technopark, Incheon Geomdan, Incheon Namdong, and Hwaseong Mado) from August to October 2022, with a total of five measurement sessions. A vehicle-mounted light-scattering PM-monitoring device, Sniffer4D, was used to measure PM10 concentrations across the industrial complexes, followed by additional drone-based measurements in high-concentration areas. The results revealed significant variations in PM10 concentrations across different industrial complexes, ranging from an average of 10.3 mg/m3 to 51.6 mg/m3. In certain areas, PM10 levels exceeded the air quality threshold for poor conditions (80 mg/m3). Notably, in the high-concentration areas of Namdong and Mado Industrial Complexes, where PM10 exceeded the threshold, elevated measurements were observed at altitudes of 25~40 m, with concentrations reaching 164.4 mg/m3 and 189.0 mg/m3, respectively. These findings suggest that PM10 emissions from industrial facilities may be more concentrated at specific altitudes rather than at ground level. This study demonstrated that conventional ground-based monitoring alone has limitations in accurately identifying emission sources and that three-dimensional drone-based measurements provide a more effective approach for emission source tracking.
하수처리장 전력 사용량의 50∼65%를 사용하는 송풍기 사용 동력 절감은 Scope 2 탄소발생을 감소시킨다. 일반적으로 국내 하수처리장은 설계기준인 일 최대 유입하수량과 유입 수질 유입 시 방류수 배출기준을 만족하도록 설계된 운전 방법으로 상시 가동하는데, 일반적인 특성을 가진 하수를 처리하는 경우 이에 맞춘 운전을 하면 송풍 동력을 절감할 수 있다. 본 연구에서는, 시뮬레이션을 통해 일반적인 하수를 처리하는 경우 4개로 구분된 호기조 중 3개만 폭기하고, 말단 호기조의 용존산소 농도와 암모니아성 질소 농도를 기준으로 전체 호기조 공급 송풍량을 조절하면 폭기 에너지를 절약할 수 있는 것으로 파악되었다. 말단 호기조 용존산소 농도를 1.5 ㎎/L로 상시 유지하고, 시간 최대 암모니아성 질소 농도를 상시 4.0 ㎎/L 이하로 유지시키는 다단 제어시스템을 도입하면 전체적으로 설계운전에 비해 16.2%의 송풍량이 절감이 될 수 있는 것으로 시뮬레이션을 통해 파악되었다. 또한 16.2% 의 송풍량 절감은 0.00599 kg CO2.eq./m3, 연간 102.7 ton의 Scope 2 탄소 발생을 절감하는 것으로 나타나, 다단제어를 포함한 Digital Twin을 실 처리장에 적용하면 송풍량 최적화를 통한 탄소발생 저감이 수행될 수 있는 것으로 나타났다.
This paper focuses on methods for quantifying landfill gas emissions, including odor, odor generation mechanisms, odor emission characteristics according to the time of waste deposition, and odor measurement data from landfills. This study analyzed the concentration ranges and median values of 22 odor compounds measured at landfill gas collection wells and various landfill surface locations across both domestic and international landfill sites. These locations included active operational areas, final cover surfaces, and leachate treatment zones. The odor with the highest measured concentration at the landfill gas collection well was H2S (with a median value of 818,616 mg m–3). During landfill operations and on the surface of uncovered landfill layers, the concentrations of NH3 (with a median value of 1,613 mg m–3) and H2S (with a median value of 279.5 mg m–3) were found to be high . Concentrations of toluene, xylene, ketones, and sulfide odors were also high at covered landfill surfaces. Additionally, NH3, styrene, and H2S had high concentrations in the leachate treatment area. The odor intensity, measured on the surface of covered sanitary landfills for domestic waste, ranged from 6 to 2,080 mg m–3 (dilution to threshold). The concentrations of NH3 and H2S were relatively high in domestic sanitary landfills. The odorous compounds that contributed the most to odor intensity were nitrogen-containing odors, sulfur-containing odors, and aldehydes. In order to effectively manage landfill odors in the future, research should be continuously conducted to accurately measure and predict odor emission fluxes from landfills. In addition, it will be necessary to develop emission reduction technologies that take into account landfill odor emission characteristics.
This study analyzed the emission characteristics of major air pollutants (dust, nitrogen oxides, hydrogen chloride, and carbon monoxide) emitted from domestic public waste incineration facilities based on their operating elements. Using automatic measuring equipment for smokestacks (TMS), data was collected from 97 facilities from 2015 to 2023. The emission source unit (kg/ton) was evaluated based on the facility’s capacity, aging level, and incineration type. Emissions were calculated, and descriptive statistical analysis was performed based on the mean, standard deviation, and coefficient of variation. As a result of the analysis, it was found that the larger the facility capacity, the lower the average emission and volatility, which suggests that the operational stability of large facilities is high. On the other hand, facilities that had deteriorated for 10 to 15 years had the highest emission rates, and emissions decreased in facilities that were aged more than 20 years. In addition, the pyrolysis and high-temperature melting incineration facilities had lower NOx and HCl emissions than the conventional incineration type. Furthermore, CO showed the greatest volatility overall, which was found to be particularly difficult to manage in facilities in the early to mid stages of aging. These results provide empirical evidence that the structural characteristics and incineration type of incineration facilities have a significant impact on air pollutant emissions and can serve as useful basic data for policy-making, including for implementing region-wide initiatives and planning major repairs in the future.
Recent global efforts to combat climate change have accelerated, with nations adopting carbon strategies such as carbon taxes and emission trading system (ETS) to support their net-zero commitments. These initiatives enable governments to enforce mitigation while maintaining their dual goal of fostering economic growth. Vietnam, a developing country, has emerged as a proactive participant by launching a national ETS, drawing from international best practices and domestic geographical advantages. This article examines the process and challenges involved in designing and implementing an ETS in Vietnam, exploring the necessary policy frameworks, institutional structures, and market mechanisms. It highlights key considerations such as the selection of sectors and entities to be covered, the allocation of emission allowances, and the establishment of new market management solutions. This article concludes with strategic recommendations to support the development of a successful and sustainable ETS mechanism in developing country like Vietnam.
Concentration-dependent multicolor emission is an unusual yet appealing photoluminescence property of various carbonaceous nanomaterials with interesting potential applications. While carbon dots (CDs) are no exception, the predictability and tuning of the microenvironment of CD to make it suitable for displaying concentration-dependent multicolor emission is far from adequately understood. Through the novel synthesis of bromine-doped CDs (Br-CDs) via controlled hydrothermal pyrolysis, we demonstrate the capacity of the same Br-CD to emit intense red (650 nm) as well as blue fluorescence (410 nm) including intermittent colors as a function of concentration and excitation wavelength. The concentration-dependent morphological transition of the Br-CDs was ascertained using electron microscopy shedding light on their optical evolution in response to concentration changes. The phenomenon is validated as being driven by unique rearrangement and surface functionality modulation, which is essentially linked to the concentration of CD in an ensemble. Notably, the synthesized Br-CDs displayed excellent enzyme-mimicking abilities where oxidase-like activity was assessed using a tetramethylbenzidine (TMB) substrate under visible light (LED, 23W), and peroxidase-like activity was evaluated with TMB and H2O2 over a wide range of pH and temperature. The visible-light-triggered generation of Reactive Oxygen Species (ROS) by Br-CDs proved to be an effective antibacterial agent demonstrating a significant eradication rate against both Gram-positive and Gramnegative bacteria. A captivating and unusual photophysical phenomenon is exhibited by Br-CD, showcasing their versatile applications in nanozymes and antibacterial interventions where emission color directly links to the activity eliminating the necessity of multiple titrations to determine concentration/units/dosage.
매립가스 표면발산량 조사 결과의 신뢰도와 측정지점 수의 적정성 평가를 위해 수도권 제2매립 장을 대상으로 중심극한정리와 t-검정을 이용하여 분석하였다. 3개의 표면발산 경로별 flux에서 매립가스 보다 메탄의 상대편차가 훨씬 크게 나타났으며, 계절별로는 두 경우 모두 여름철 상부가 각각 409%, 1,174%로 가장 컸다. 상대오차도 메탄의 값이 전반적으로 컸으며, 4계절 평균시 여름철 메탄이 182.7%로 가장 크고, 매립가스의 봄과 겨울철이 33.0% 내외로 가장 작았다. 20%의 상대오차를 허용할 때 현장 측정 지점 수는 모두 적정 수 대비 100% 미만이었으며, 특히 메탄이 매우 낮았다. 표면발산량이 가장 큰 상부의 경우 측정지점 수의 만족도는 봄부터 겨울까지 매립가스는 각각 26.1%, 9.8%, 17.9%, 22.6% 그리고 메탄 은 각각 2.7%, 1.2%, 5.9%, 3.2%에 불과하였다. 연구결과 매립가스 표면발산량 조사시에 현재의 챔버 방 식은 신뢰도 확보에 한계가 있으므로 대체 조사방법에 대한 연구가 필요할 것으로 판단되었다.
Gas sensors are crucial devices in various fields including industrial safety, environmental monitoring, gas infrastructure and medical diagnosis. These sensors measure specific gases in different environments, guaranteeing operational safety and efficiency through precise on-site measurements. Designed for high sensitivity, stability and reliability, gas sensors must also be cost-effective, quickly responsive and compact. To address these diverse requirements, we have developed two types of gas sensors based on the volumetric and the manometric method. These sensors operate by measuring the gas volume and the pressure changes, respectively, of the emitted gas. These sensors are capable of determining gas transport parameters such as gas uptake, solubility and diffusion coefficient for gas-charged polymers in high pressure environment. The sensors provide rapid responses within one second and can measure gas concentrations ranging from 0.01 wt ppm to 1500 wt ppm with adjustable sensitivity and measurement ranges. Performance evaluations demonstrate the sensors' reliability, adaptability to varying measurement ranges and stability under temperature and pressure fluctuations. As a result, this sensor system facilitates the real time detection and analysis of gas transport properties in pure gases including H₂, He, N₂, O₂ and Ar, making it suitable for pure gas sensing.
This study evaluated the emission characteristics of volatile organic compounds (VOCs) from 29 asphalt concrete (ascon) manufacturing facilities in South Korea. VOC concentrations were measured inside industrial stacks and storage silos and during and after the truck loading process. Based on these measurements, emission factors were calculated according to facility type and fuel consumption rate. Afterward, they were compared with emission factors set by the United States Environmental Protection Agency (U.S. EPA). The major VOCs emitted from ascon manufacturing facilities were identified as benzene, toluene, ethylbenzene, and the xylene isomers (o-xylene, m-xylene, and p-xylene). The emission concentrations of the VOCs were found to be relatively higher inside industrial stacks and storage silos. Emission factors varied depending on the facility type, with lower values observed in manufacturing facilities using recycled ascon compared to conventional ascon facilities. The emission factors derived in this research were found to be lower than those reported by the U.S. EPA. This difference is attributed to the fact that the emission factors in this study were calculated based on VOC concentrations after treatment by pollution control facilities. As the Clean Air Policy Support System (CAPSS) also sets emission factors based on post-treatment concentrations, this study’s findings can serve as fundamental data to enhance the accuracy of VOC emission estimations.
This study measured and analyzed the discharge concentration and characteristics of odor substances emitted from the discharge outlets of asphalt manufacturing facilities in South Korea. Measured factors included flow rate, composite odors, and 22 designated odor substances. After applying the dilution factor of composite odors emitted from 33 asphalt manufacturing facilities located in various regions to the composite odor emission standard of 500 times, it was found that more than half of these facilities exceeded the emission standard. The contribution rate of the designated odor substances from the discharge outlets was the highest for acetaldehyde at over 50%, followed by hydrogen sulfide and methyl mercaptan. The correlation between composite odors and the concentration of major designated odor substances was analyzed, and it was found that methyl mercaptan and acetaldehyde showed some correlation with the composite odor dilution factor. The methyl mercaptan odor intensity corresponding to the odor intensity of 4.5 to 5 ppb, which is the allowable odor dilution multiple emission standard of the odor emission source outlet, was estimated to be approximately 1.6 to 2.2 ppb, and the corresponding methyl mercaptan emission concentration range was estimated to be 0.98 to 2.02 ppb. The composite odor emission coefficient of asphalt concrete manufacturing facilities was estimated to be higher for general asphalt concrete than for asphalt concrete recycling facilities, and the composite odor emission coefficient of newly produced general asphalt concrete was estimated to be greater than that of recycled asphalt concrete. In terms of fuel usage, the composite odor emission coefficient of facilities that used Bunker C fuel oil was estimated to be higher than that of facilities powered by LPG and LNG fuel. It was deemed necessary to select 2 to 3 major designated odor substances that are correlated with the composite odor dilution factor for each major odor emission source, set the designated odor substance concentration corresponding to the composite odor dilution factor emission allowance standard, and review a plan to monitor the designated odor substances at the emission point.
This study sought to improve the accuracy of estimating national emissions of volatile organic compounds (VOCs) from consumer solvent products (CSPs) by updating emission factors and category-specific activity data. The classification of the CSPs, which was originally proposed by the U.S. Environmental Protection Agency, was reorganized to reflect domestic consumption patterns in Korea. VOC contents, product sales, and atmospheric evaporation rates of the CSPs were analyzed for subcategories including personal care products, household products, and automotive aftermarket products to update their emission factors. Additionally, the category-specific activity data, previously based on only population statistics, were newly applied to count the characteristics of each classification, such as the number of households and the number of registered automobiles. The updated emission factors were calculated to be 1.90 kg/capita·yr for personal care products, 4.37 kg/household·yr for household products, and 2.36 kg/car·yr for automotive products. An evaluation of uncertainties revealed the limitation in the product classification, the shortage of sales data, and the lack of information on VOC contents depending on the product forms (liquid, solid, and aerosol). This study highlighted the necessity of developing detailed classification systems and standardized VOC content measurement methods, ultimately contributing to more accurate and practical assessments of VOC emissions from the CSPs.