Gas sensors are crucial devices in various fields including industrial safety, environmental monitoring, gas infrastructure and medical diagnosis. These sensors measure specific gases in different environments, guaranteeing operational safety and efficiency through precise on-site measurements. Designed for high sensitivity, stability and reliability, gas sensors must also be cost-effective, quickly responsive and compact. To address these diverse requirements, we have developed two types of gas sensors based on the volumetric and the manometric method. These sensors operate by measuring the gas volume and the pressure changes, respectively, of the emitted gas. These sensors are capable of determining gas transport parameters such as gas uptake, solubility and diffusion coefficient for gas-charged polymers in high pressure environment. The sensors provide rapid responses within one second and can measure gas concentrations ranging from 0.01 wt ppm to 1500 wt ppm with adjustable sensitivity and measurement ranges. Performance evaluations demonstrate the sensors' reliability, adaptability to varying measurement ranges and stability under temperature and pressure fluctuations. As a result, this sensor system facilitates the real time detection and analysis of gas transport properties in pure gases including H₂, He, N₂, O₂ and Ar, making it suitable for pure gas sensing.
This study evaluated the emission characteristics of volatile organic compounds (VOCs) from 29 asphalt concrete (ascon) manufacturing facilities in South Korea. VOC concentrations were measured inside industrial stacks and storage silos and during and after the truck loading process. Based on these measurements, emission factors were calculated according to facility type and fuel consumption rate. Afterward, they were compared with emission factors set by the United States Environmental Protection Agency (U.S. EPA). The major VOCs emitted from ascon manufacturing facilities were identified as benzene, toluene, ethylbenzene, and the xylene isomers (o-xylene, m-xylene, and p-xylene). The emission concentrations of the VOCs were found to be relatively higher inside industrial stacks and storage silos. Emission factors varied depending on the facility type, with lower values observed in manufacturing facilities using recycled ascon compared to conventional ascon facilities. The emission factors derived in this research were found to be lower than those reported by the U.S. EPA. This difference is attributed to the fact that the emission factors in this study were calculated based on VOC concentrations after treatment by pollution control facilities. As the Clean Air Policy Support System (CAPSS) also sets emission factors based on post-treatment concentrations, this study’s findings can serve as fundamental data to enhance the accuracy of VOC emission estimations.
This study measured and analyzed the discharge concentration and characteristics of odor substances emitted from the discharge outlets of asphalt manufacturing facilities in South Korea. Measured factors included flow rate, composite odors, and 22 designated odor substances. After applying the dilution factor of composite odors emitted from 33 asphalt manufacturing facilities located in various regions to the composite odor emission standard of 500 times, it was found that more than half of these facilities exceeded the emission standard. The contribution rate of the designated odor substances from the discharge outlets was the highest for acetaldehyde at over 50%, followed by hydrogen sulfide and methyl mercaptan. The correlation between composite odors and the concentration of major designated odor substances was analyzed, and it was found that methyl mercaptan and acetaldehyde showed some correlation with the composite odor dilution factor. The methyl mercaptan odor intensity corresponding to the odor intensity of 4.5 to 5 ppb, which is the allowable odor dilution multiple emission standard of the odor emission source outlet, was estimated to be approximately 1.6 to 2.2 ppb, and the corresponding methyl mercaptan emission concentration range was estimated to be 0.98 to 2.02 ppb. The composite odor emission coefficient of asphalt concrete manufacturing facilities was estimated to be higher for general asphalt concrete than for asphalt concrete recycling facilities, and the composite odor emission coefficient of newly produced general asphalt concrete was estimated to be greater than that of recycled asphalt concrete. In terms of fuel usage, the composite odor emission coefficient of facilities that used Bunker C fuel oil was estimated to be higher than that of facilities powered by LPG and LNG fuel. It was deemed necessary to select 2 to 3 major designated odor substances that are correlated with the composite odor dilution factor for each major odor emission source, set the designated odor substance concentration corresponding to the composite odor dilution factor emission allowance standard, and review a plan to monitor the designated odor substances at the emission point.
This study sought to improve the accuracy of estimating national emissions of volatile organic compounds (VOCs) from consumer solvent products (CSPs) by updating emission factors and category-specific activity data. The classification of the CSPs, which was originally proposed by the U.S. Environmental Protection Agency, was reorganized to reflect domestic consumption patterns in Korea. VOC contents, product sales, and atmospheric evaporation rates of the CSPs were analyzed for subcategories including personal care products, household products, and automotive aftermarket products to update their emission factors. Additionally, the category-specific activity data, previously based on only population statistics, were newly applied to count the characteristics of each classification, such as the number of households and the number of registered automobiles. The updated emission factors were calculated to be 1.90 kg/capita·yr for personal care products, 4.37 kg/household·yr for household products, and 2.36 kg/car·yr for automotive products. An evaluation of uncertainties revealed the limitation in the product classification, the shortage of sales data, and the lack of information on VOC contents depending on the product forms (liquid, solid, and aerosol). This study highlighted the necessity of developing detailed classification systems and standardized VOC content measurement methods, ultimately contributing to more accurate and practical assessments of VOC emissions from the CSPs.
This study was conducted to efficiently manage THC, which was previously managed only through self-measurement. Using Selected Ion Flow Tube Mass Spectrometers, a real-time air quality measurement device, VOCs were measured in five industrial complexes, and methyl ethyl ketone was measured at the highest concentration in the industrial complexes. THC measurements were conducted at business sites located in the area. As a result of the measurements, printing processes, drying processes, etc. exceeded the emission standard of 110 ppm in three processes, and the outlets that exceeded the emission standard were instructed to improve prevention facilities such as activated carbon replacement, thereby reducing highconcentration VOC emissions. The results of the study suggest that if inspection agencies measure VOCs in real time and conduct Total Hydro Carbon measurements, etc. mainly in high-concentration areas, VOCs and Total Hydro Carbon, which are the causes of greenhouse gases and odors, can be efficiently reduced.
This study aimed to assess the current global efforts to reduce greenhouse gas emissions and understand the domestic scenario, particularly focusing on pavement-marking works during road-construction projects. Using internationally commercialized programs, this study aimed to calculate carbon emissions from these projects, identify areas that require further action or improvement, and propose strategies to address them. This study assessed the current global efforts to reduce greenhouse gas emissions and understand the domestic scenario, particularly focusing on pavement-marking works during road-construction projects. Using internationally commercialized programs, this study aimed to calculate carbon emissions from these projects, identify areas that require further action or improvement, and propose strategies to address them. Carbon dioxide emissions from pavement-marking projects were estimated. For a 5,746 m2 construction project, a total of 96.637 was emitted; for a 5,032 m2 project with four types of markings, 89.840 was emitted. A project involving five types of markings, traffic controls, and safety measures resulted in 6.662 emissions. On average, 16.8 was emitted per 1 m2, with 17.8 for the four types and 9.3 for the five types of markings. This study is significant because it calculated the carbon dioxide emissions from domestic pavement-marking works. The use of unit price data is convenient, and for more accurate calculations, expanding environmental product declaration (EPD) certified items and accelerating the establishment of a domestic life-cycle inventory (LCI) are recommended.
In this study used Computational Fluid Dynamic analysis to examine NOx reduction in hydrogen combustion, analyzing six conditions with varying air/fuel ratios, temperatures, and concentrations. Results were compared between two combustor shapes and previous experimental data. Findings showed increased air/fuel ratios decreased flame temperature and increased post-combustion O2. NOx emissions peaked at high temperatures and low O2. Numerical results aligned with previous experimental trends, validating the approach. Combustor shape differences, reflecting variations in fuel and air pipes, significantly affected flow rates and combustion positions. This reduced NOx emissions up to a certain air/fuel ratio, but excessive increases diminished this effect. The study highlights the complex relationship between combustor design, operating conditions, and NOx emissions. Further research is needed to optimize NOx reduction by considering pipe numbers and combustion locations. Future studies should explore various combustor geometries, fine-tune air/fuel ratios, and investigate additional parameters influencing NOx formation and reduction in hydrogen combustion systems.
One of the harmful substances produced by livestock manure is ammonia (NH3), which is emitted at a high rate. Additionally, NH3 reacts with sulfur oxides (SOx) and nitrogen oxides (NOx) in the atmosphere to produce fine particulate matter (PM2.5). However, the management and countermeasures for NH3 in livestock facilities were found to be inadequate. To establish effective measures, an NH3 emission factor that complies with certified methodologies is required. This study calculates the emission factor by monitoring NH3 concentration and ventilation between September 2022 and May 2023 in a mechanically-ventilated enclosed facility. The data measurement was performed in accordance with the VERA test protocol from Europe, and NH3 concentrations were monitored in real-time using photoacoustic spectroscopy measurement equipment. The average NH3 concentrations for Rooms 1, 2, and 3 during the entire period were measured at 0.96 ± 0.39 ppm, 1.20 ± 0.57 ppm, and 1.34 ± 0.71 ppm, respectively, with an overall average of approximately 1.17 ± 0.49 ppm. The average ventilation was recorded at 2,782.0 ± 1,510.4 m³/h, with an average internal temperature of 26.0 ± 1.5 °C and a relative humidity of 63.9 ± 5.2%. The average emission factor per room was calculated as 0.14 ± 0.03 g/day/pig for Room 1, 0.19 ± 0.07 g/day/pig for Room 2, and 0.15 ± 0.05 g/day/pig for Room 3. Ultimately, this study determined the average NH3 emission factor for the weaned pig facility to be 0.16 g/day/ pig.
As global climate change impacts become more apparent, countries are implementing various policies to achieve carbon neutrality that can be categorized into direct regulations and market-based indirect regulations. The latter, utilizing economic incentives, is considered more efficient in transforming corporate behavior and promoting voluntary efforts for carbon reduction. In alignment with international trends, South Korea has introduced the Emission Trading System (ETS) in 2015. Despite this, the domestic carbon market remains underdeveloped, with low ETS participation, particularly in the aquaculture sector. In order to activate external projects under the ETS, this study proposes short-term strategies including linking ETS with popular eco-friendly energy distribution projects, developing standardized monitoring techniques, and integrating carbon reduction initiatives with other support mechanisms such as direct payment programs. Long-term strategies focus on developing new methodologies for external projects, promoting the use of renewable energy, and enhancing technologies to reduce energy consumption in aquaculture operations. By implementing these strategies, the study aims to enhance the participation of the aquaculture sector in carbon reduction efforts, contributing to the overall goal of carbon neutrality.
Biodiesel is a traditional energy field that can replace low-quality marine fuels for ships and various studies have been conducted. Since the 2000s, Korea has introduced a mandatory supply system of biodiesel for domestic vehicle diesel, gradually raising the blending ratio from 0.5% to 3.5%, and is expected to raise the mandatory blending ratio to about 8.0% by 2030. Therefore, in this study attempted to blend high-quality samples that meet the biodiesel quality standards manufactured by domestic companies with MGO in ratios ranging from 0 to 60%. We utilized a 1-ton combustion chamber to compare and analyze the exhaust gas emissions characteristics. As a result, in the BD60 condition, which represents the maximum range in this study, the O2 increased by approximately 1.5%p, and CO2 tended to decrease by 1.1%p. NOx decreased by approximately 18.2%p from 34.1 ppm to 27.9 ppm. In the case of SOx, a very low concentration of 0.08 ppm was detected under the BD0 condition, and it was undetectable under all other conditions containing biodiesel. This suggests that MGO itself has excellent low-sulfur oil quality and can implement zero SOx through biodiesel mixing. Furthermore the combustion efficiency decreased by approximately 1.91%, from 72% to 70.2%, and the exhaust gas temperature also decreased by about 4.5%p. However despite the lower calorific value of biodiesel compared to MGO, it demonstrated relatively close thermal output per unit content. This indicates sufficient potential for biodiesel to serve as a viable alternative fuel for ships in the future.
This study aimed to evaluate the efficiency of combining acidification with adsorbents (zeolite and biochar) to mitigate the environmental impacts of pig slurry, focusing on ammonia (NH3) emission and nitrate (NO3 -) leaching. The four treatments were applied: 1) pig slurry (PS) alone as a control, 2) acidified PS (AP), 3) acidified pig slurry with zeolite (APZ), and 4) acidified pig slurry with biochar (APB). The AP mitigates NH3 emission and NO3 - leaching compared to PS alone. Acidification reduced the cumulative NH3 emission and its emission factor by 35.9% and 12.5%, respectively. The APZ and APB increased NH4 +-N concentration, with the highest level in APB, compared to AP. The NH4 + adsorption capacity of APB (0.90 mg g-1) was higher than that of APZ (0.63 mg g-1). The APB and APZ treatments induced less NH3 emission compared to AP. The cumulative NH3 emission was reduced by 12.2% and 27.6% in APZ and APB, respectively, compared to AP treatment. NO3 - leaching began to appear on days 12 and 13, and its peak reached on days 16 and 17, which were later than AP. The cumulative NO3 - leaching decreased by 17.7% and 25.0% in APZ and APB, respectively, compared to AP treatment. These results suggest that combining biochar or zeolite with acidified pig slurry is an effective method to mitigate NH3 emission and NO3 - leaching, with biochar being particularly effective.
PURPOSES : The study aims to establish a comprehensive life cycle assessment model for bridges in South Korea considering domestic carbon emission factors. The main aims are to evaluate the carbon emission of bridge construction, focusing on the Seong-ri Bridge as a case study, and to improve national environmental policies and management strategies. METHODS : We utilized the life cycle assessment (LCA) methodology, adhering to standards set by ISO, to categorize each phase of the bridge's life cycle. The process involved selecting the bridge type based on the compilation of a detailed analysis range. The analysis covered various stages from raw material supply (A1-A3) to construction (A4-A5) and maintenance (B2-B5), excluding certain stages due to data unavailability. Carbon emission factors were then applied to quantify emissions at each stage. RESULTS : The findings indicate that the raw material production phase (A1-A3) contributes to approximately 96% of the total carbon emissions, highlighting its significant impact. We report detailed calculations of emissions using domestically developed emission factors for materials such as steel and concrete and establish a carbon emission per unit length measure for comparative analysis with other infrastructure. CONCLUSIONS : We leveraged LCA ISO standards to analyze each stage of the Seong-ri bridge, calculating its carbon emissions based on domestic factors for CO2, CH4, and N2O. By tailoring the study to Korea-specific emission factors, we develop a greenhouse gas model closely aligned with the nation’s environmental conditions. The results contribute to improving environmental impact assessments and strategically aiding national policy and management decisions.
The odors emitted from wastewater treatment plants are not only a health and hygiene problem, but can also lead to complaints from residents and have wider social ramifications such as bringing about falling property values in the surrounding area. In this paper, based on the data measured at domestic and overseas wastewater treatment facilities, the concentrations of complex odors and odorous compounds were compared for each treatment/process: primary treatment, secondary treatment, and sludge treatment processes. Odor compounds that contribute greatly to complex odors were summarized for each process. In addition, the characteristics of odor wheels for each wastewater treatment process, which provide both chemical and olfactory information regarding odors, were reviewed. For domestic wastewater treatment facilities, the complex odor concentrations (unit, dilution factor) of the primary and secondary treatment processes were 4.5-100,000 (median, 32.1) and 2.5-30,000 (median, 10.7), respectively. However, the complex odor concentrations in the sludge treatment process were 3.0-100,000 (median, 118.7), which was more than three times higher than that in the wastewater treatment process. In the wastewater treatment process, those odor compounds making the greatest contributions to complex odors were sulfur-containing compounds such as hydrogen sulfide, dimethyl sulfide, and dimethyl disulfide DMS. In order to properly manage odors from wastewater treatment plants and minimize their impact, it is important to understand the status of odor emissions. Therefore, the compositions and concentrations of odors from wastewater treatment processes and odor wheel information, which are reviewed in this paper, are used to evaluate the potential risk of odor from wastewater treatment facilities in order to derive strategies to minimize odor emissions. Moreover, the information can be usefully used to introduce the best available technology to reduce odors emitted from wastewater treatment facilities.
Cars using diesel have always had problems with reducing exhaust fumes, and have been studied steadily in this regard. There were studies on the remanufacturing effect of DOC catalyst deactivated by diesel vehicle smoke reduction device, analysis of vehicle fire accident cases caused by damage to diesel vehicle smoke reduction device, and related studies on the remanufacturing effect of diesel vehicle smoke reduction device DPF. This study also developed a burner system in a smoke reduction device suitable for exhaust engines to completely burn smoke generated by institutions using diesel engines in low-temperature exhaust gases. Following the development of the existing high-performance heater, burner structure capable of maintaining ignition state in exhaust flow, pulsation generated by diesel engines, and exhaust flow control unit, the actual configuration, function and effect of the device, development contents, basic data and abnormalities of the vehicle, and comparison with other developed products.
In this study, the performances of H2S, NH3, and HCl sensors for real-time monitoring in small emission facilities (4, 5 grades in Korea) were evaluated at high concentration conditions of those gases. And the proper approach for the collection of reliable measurement data by sensors was suggested through finding out the effect on sensor performances according to changes in temperature and humidity (relative humidity, RH) settings. In addition, an assessment on sensor data correction considering the effects produced by environmental settings was conducted. The effects were tested in four different conditions of temperature and humidity. The sensor performances (reproducibility, precision, lower detection limit (LDL), and linearity) were good for all three sensors. The intercept (ADC0) values for all three sensors were good for the changes of temperature and humidity conditions. The variation in the slope value of the NH3 sensor showed the highest value, and this was followed by the HCl, H2S sensors. The results of this study can be helpful for data collection by enabling the more reliable and precise measurements of concentrations measured by sensors.
The present study estimated rumen fermentation characteristics and greenhouse gas emissions of different forages. Alfalfa, timothy, tall fescue, Italian ryegrass, and rice straw as the main forage sources for Hanwoo were used in the present study. Crude protein was highest in alfalfa but lowest in rice straw (p<0.05). Ether extract was higher in alfalfa and Italian ryegrass than in the other forages (p<0.05). Crude ash was highest in rice straw but lowest in tall fescue (p<0.05). Neutral detergent fiber was highest in tall fescue but lowest in alfalfa (p<0.05). Acid detergent fiber was highest in Italian ryegrass and rice straw but lowest in alfalfa (p<0.05). In vitro digestibilities of dry matter (DMD) and neutral detergent fiber (NDFD) were highest in timothy but lowest in rice straw (p<0.05). Rumen pH was highest (p<0.05) in alfalfa, while ammonia-N was higher (p<0.05) in alfalfa and Italian ryegrass than in the other forages. Total volatile fatty acid was highest (p<0.05) in timothy, while acetate and propionate were highest (p<0.05) in alfalfa and rice straw, respectively. Acetate to propionate ratio was higher (p<0.05) in alfalfa, timothy, and Italian ryegrass than in rice straw. Rice straw had lowest total gas (mL) (p<0.05) but highest its per DMD and NDFD. Rice straw had higher (p<0.05) CO2 (per DMD and NDFD) compared to alfalfa (per DMD and NDFD), timothy (per DMD and NDFD), tall fescue (per NDFD), and Italian ryegrass (per DMD). Again, rice straw had higher (p<0.05) CH4 (per DMD and NDFD) compared to timothy (per DMD and NDFD) and tall fescue (per NDFD). Therefore, this study indicates that timothy has a higher nutrient digestibility and volatile fatty acid in the rumen leading to a reduction of greenhouse gas emission.
PURPOSES : This study was conducted to evaluate the physical properties of the RAP 50 asphalt mixture containing polymer modified rejuvenator and warm-mix additive to improve the recycling rate of RAP and reduce CO2 emission. METHODS : Mix design of Polymer Modified Warm-mix Asphalt Mixture(RAP 50), and Hot Mix Asphalt Mixture(RAP 30) were produced and the properties of asphalt mixture such as Marshall Stability, ITS, Deformation Strength, TSR, and Dynamic Stability were compared between the two asphalt mixtures. RESULTS : The RAP 50 asphalt mixture showed superior or similar performances compared to the RAP 30 asphalt mixture in all the tests conducted. The results of the Marshall stability and dynamic stability in particular were 13,045N and 3,826 pass/mm, which were 11.37% and 76.7% greater than the RAP 30 asphalt mixture, which indicated that high plastic deformation resistance may be expected. CONCLUSIONS : The results obtained from laboratory tests on the two types of mixtures indicated that the use of polymer modified rejuvenator and warm-mix additive not only allows to increase the proportion of RAP but also improves its properties under lower temperature condition than RAP 30 asphalt mixture. Additionally, it was confirmed that plastic deformation resistance was high and moisture resistance and crack resistance were improved for a RAP 50 asphalt mixture.