The purpose of this study was to determine the conditions necessary for the total eradication of mite pests in indoor environments. The study involved the construction of a sterilization experimental setup. For this setup, various sterilization techniques, such as UV-C, ozone, ultrasound, and heat were applied, based on previous research. The experimental procedure consisted of placing mite pests in a chamber and subjecting them to different sterilization techniques. Observations were conducted immediately after the experiment and repeated five days later to assess the extent of eradication. The results showed that UVC, ozone, and ultrasound methods were not successful in completely eradicating the mite pests. In contrast, heat sterilization demonstrated effectiveness depending on the specific temperature and exposure time. To achieve the eradication of mite pests in indoor environments, it is necessary to maintain conditions of short-term high-temperature sterilization above 65°C or sustain temperatures above 50°C for a minimum duration of 90 minutes.
The concern of fine particle (PM2.5) management of outdoor environments has been increasing due to its exposure and related health effects in Korea. As a result, PM2.5 standard in atmosphere environment was regulated in 2015. On the other hand, indoor PM2.5 standard has been required because most people spent their times in indoor environments. In this study, we measured the PM2.5 and PM10 concentrations both indoor and outdoor environments of public-use facilities such as underground stations, underground shopping centers, and nurseries for 24 hour with filter-weighing method in Seoul and Daegu. Measurement duration was from March to April in 2014 during the Asian dust period. At all measurements, indoor to outdoor (I/O) concentration ratios exceeded 1 except 1 day nursery in Daegu in spite of Asian dust period. The ratios of PM2.5 to PM10 concentrations ranged from 0.63 to 0.75 in indoor environments, and from 0.63 to 0.82 in outdoor, indicating that PM2.5 should be carefully managed in indoor environments as well as outdoor atmosphere.
The torque shear high strength bolt is clamped normally at the break of pin-tail specified. However, the clamping forces on slip critical connections do not often meet the required tension, as it considerably fluctuates due to torque coefficient dependent on lubricant affected temperature. In this study, the clamping tests of torque shear bolts were conducted independently at indoor conditions and at construction site conditions. During last six years, temperature of candidated site conditions was recorded from -11℃ to 34℃. The indoor temperature condition was ranged from -1 0℃ to 50℃ at each 10℃ interval. As for site conditions, the clamping force was reached in the range from 159 to 210 kN and the torque value was from 405 to 556 Nㆍm. The range of torque coefficient at indoor conditions was analyzed from 0.126 to 0.158 while tensions were indicated from 179 to 192 kN. The torque coefficient at site conditions was ranged from 0.118 to 0.152. Based on this test, the variable trends of torque coefficient, tension subjected temperature can be taken by statistic regressive analysis. The variable of torque coefficient under the indoor conditions is 0.13%/℃ while it reaches 2.73%/℃ at actual site conditions. When the indoor trends and site conditions is combined, the modified variable of torque coefficient can be expected as 0.2% /℃. and the modified variable of tension can be determined as 0.18%/℃.
Exposure to environmental tobacco smoke (ETS) could adversely affect health. The aim of this study was to quantify the contribution of ETS exposure in nonsmokers of entertainment facilities. We simultaneously measured nicotine and nitrogen dioxide (NO2), which are known as indicators of ETS, concentrations in indoor internet cafe, billiard, karaoke, bar and restaurant, and estimated exposure level of other harmful agents occurred from tobacco smoking. Mean nicotine concentration (10.57±2.53㎍ /m3 ) of internet cafe was the highest comparing to other facilities, whereas mean concentration of restaurant where was non-smoking area was 0.28±0.08㎍ /m3 . There was statistically not correlated between NO2 and nicotine concentrations in entertainment facilities. Therefore, the use of NO2 concentration as indicator of ETS exposure may not be available. To date, there are no standards about each agent occurred from ETS. Consequently administrative control and regulation, and further researches in relation to ETS exposure should be needed.
A gradient method can provide a global optimal path in indoor environments. However, the optimal path can be often generated in narrow areas despite a sufficient wide area which lead to safe navigation. This paper presents a novel approach to path planning for safe navigation of a mobile robot. The proposed algorithm extracts empty regions using a ray-casting method and then generates temporary waypoints in wider regions in order to reach the goal fast and safely. The experimental results show that the proposed method can generate paths in the wide regions in most cases and the robot can reach the goal safely at high speeds.
FastSLAM is a factored solution to SLAM problem using a Rao-Blackwellized particle filter. In this paper, we propose a practical FastSLAM implementation method using an infrared camera for indoor environments. The infrared camera is equipped on a Pioneer3 robot and looks upward direction to the ceiling which has infrared tags with the same height. The infrared tags are detected with the infrared camera as measurements, and the Nearest Neighbor method is used to solve the unknown data association problem. The global map is successfully built and the robot pose is predicted in real time by the FastSLAM2.0 algorithm. The experiment result shows the accuracy and robustness of the proposed method in practical indoor environment.
In this paper, we develope the navigation system for patrol robots in indoor environment. The proposed system consists of PDA map modelling, a localization algorithm based on a global position sensor and an automatic charging station. For the practical use in security system, the PDA is used to build object map on the given indoor map. And the builded map is downloaded to the mobile robot and used in path planning. The global path planning is performed with a localization sensor and the downloaded map. As a main controller, we use PXA270 based hardware platform in which embedded linux 2.6 is developed. Data handling for various sensors and the localization algorithm are performed in the linux platform. Also, we implemented a local path planning algorithm for object avoidance with ultra sonar sensors. Finally, for the automatic charging, we use an infrared ray system and develop a docking algorithm. The navigation system is experimented with the two-wheeled mobile robot using North-Star localization system.
In this study, we investigated PM10, NO2, and 1-hydroxypyrene(1-OHP) in urine at indoor environments which are 35 houses and 20 hospitals for using air cleaner and non-using air cleaner in Seoul metropolitan area and Kyoung-gi province from April, 2003 to February, 2004. Moreover, we examined effect of improvement for indoor air quality and health effect by concentration of 1-OHP also we investigated removal efficiency by air cleaner for PM10, NO2, and 1-OHP that were 28.5%, 27.4%, and 42.1% respectively. Concentration of PM10, NO2, and 1-OHP were 19.02±18.14㎍/m3, 8.66±3.06ppb, and 0.19±0.18㎍/g creatinine when air cleaner was no worked. The concentration for PM10, NO2, and 1-OHP were 13.60±10.79㎍/m3, 6.29±2.71ppb, and 0.11±0.10㎍/g creatinine, respectively. It was significant statistically. Therefore, it is considered using the air cleaner to remove the partial pollutants in indoor environment and is positive effect for health.
Volatile organic compounds (VOCs) are present in essentially all natural and synthetic materials from petrol to flowers. In this study, indoor and outdoor VOCs concentrations of houses, offices and internet-cafes were measured and compared simultaneously with personal exposures of each 50 participants in Asan and Seoul, respectively. Also, factors that influence personal VOCs exposure were statistically analyzed using questionnaires in relation to house characteristics, time activities, and health effects. All VOCs concentrations were measured by OVM passive samplers (3M) and analyzed with GC/MS. Target pollutants among VOCs were Toluene, o-Xylene, m/p-Xylene, Ethylbenzene, MIBK, n-Octane, Styrene, Trichloroethylene, and 1,2-Dichlorobenzene.
Indoor and outdoor VOCs concentrations measured in Seoul were significantly higher than those in Asan except Ethylbenzene. Residential indoor/outdoor (I/O) ratios for all target compounds ranged from 0.94 to 1.51 and I/O ratios of Asan were a little higher than those of Seoul. Relationship between personal VOCs exposure, and indoor and outdoor VOCs concentrations suggested that time-activity pattern could affect the high exposure to air pollutant. Factors that influence indoor VOCs level and personal exposure with regard to house characteristics in houses were building age, inside smoking and house type. In addition insecticide and cosmetics interestingly affected the VOCs personal exposure. Higher exposure to VOCs might be caused to be exciting increase and memory reduction, considering the relationship between measured VOCs concentrations and questionnaire (p<0.05).
The well-mixed room model has been traditionally used to predict the concentrations of contaminants in indoor environments. However, this is inappropriate because the flow fields in many indoor environments distribute contaminants non-uniformly, due to imperfect air mixing. Thus, some means used to describe an imperfectly mixed room are needed. The simplest model that accounts for imperfect air mixing is a two-zone model. Therefore, this study on development of computer program for the two-zone model is carried out to propose techniques of estimating the concentration of contaminants in the room. To do this, an important consideration is to divide a room into two-zone, i.e. the lower and upper zone assuming that the air and contaminants are well mixed within each zone. And between the zones the air recirculation is characterized through the air exchange parameter. By this basic assumption, the equations for the conservation of mass are derived for each zone. These equations are solved by using the computational technique. The language used to develope the program is a VISUAL BASIC.
The value of air exchange coefficient(f_12) is the most difficult to forecast when the concentrations of contaminants in an imperfectly mixed room are estimated by the two-zone model. But, as the value of f_12 increases, the air exchange between each zone increases. When the value of f_l2, is approximately 15, the concentrations in both zone approach each other, and the entire room may be approximately treated as a single well-mixed room. Therefore, this study is available for designing of the ventilation to improve the air quality of indoor environments. Also, the two-zone model produces the theoretical base which may be extended to the theory for the multi-zone model, that will be contributed to estimate the air pollution in large enclosures, such as shopping malls, atria buildings, airport terminals, and covered sports stadia.
This paper aims to describe the indoor-outdoor air quality in school environment through the analyses of heavy metal concentration by Inductively Coupled Plasma(ICP), which were observed at some school environment, such as traffic area, industrial area, seme-industrial area, and residence area.
The results are as follows ;
(1) Regardless indoor and outdoor, the area with the highest concentration of heavy metal is industrial area followed by traffic area, residence area and semi-industrial area in descending order of magnitude. And the heavy metal concentration of indoor is higher than that of outdoor.
(2) The main heavy metal components with more high level concentration of indoor than those of outdoor are Zn, Al, Ca and these heavy metal concentrations are higher in class than in corridor and outdoor.