이 연구는 열역학적으로 불안정한 활성성분을 안정하게 봉입하기위해 초임계 상태에서 다중층 의 리포좀을 생성하고 유효성분을 봉입하는 것에 관한 것이다. 초임계 상태에서 원활하게 리포좀을 형성시 키기 위하여 식물성유래의 하이드로제네이티드 포스파티딜콜린과 그 유도체, 하이드로제네이티드 수크로 오스다이스테아레이트를 포함하는 혼합 계면활성제를 고순도로 합성하였다. 이것을 반응조에 이산화탄소 를 주입하여 초임계상태를 만들고 교반함으로써 거대 리포좀을 생성시키고, 여기에 제니스테인(genistein) 과 쿼세틴(quercetin)을 첨가하여 봉입하는 제조방법에 대하여 기술하였다. 혼합지질계면활성제(SC-Lipid Complex)의 HLB는 12.50이었으며, 아주 낮은 농도에서도 다중층의 리포좀 소포체가 형성되었다. 이 계면 활성제의 외관은 엷은 황색의 페이스트로 특이취가 있었으며, 비중은 0.972이었고, 산가는 0.12로 고순도 로 합성이 되었음을 알 수 있었다. SC-Lipid Complex를 사용하여 20 wt%의 카플릭/카프릭 트리글리세라 이드와 트리에칠헥사노인을 사용한 유화력 실험결과 96.2 %의 유화력을 가지고 있음을 알 수 있었다. 제 니스테인을 봉입한 초임계 리포좀에 대하여 투과전자현미경(Cryo-TEM)을 통해 다중층의 리포좀 소포체 가 형성되었다는 것을 확인하였다. 제니스테인이 봉입된 1차 리포좀화한 입자 크기는 253.9 nm이었고, 2 차 캡슐의 크기는 18.2 ㎛ 이었다. 제니스테인을 표준물질로 하여 초임계 상태 리포좀의 봉입효율은 99.5 %이었고, 일반적인 리포좀은 93.6 %의 효율을 가지는 것으로 나타났다. 또한 쿼세틴을 봉입한 항산화력 실험은 DPPH법으로 확인한 결과 초임계리포좀에서 유의성 있게 우수한 항산화력을 유지하고 있음을 알 수 있었다. 이러한 결과를 바탕으로 효과는 우수하나 열역학적으로 불안정한 원료를 유기용매를 사용하지 않고 초임계 상태에서 리포좀에 봉입하고, 고기능성의 스킨케어 화장품, 메이크업 화장품, 두피보호용 화장 품 등 다양한 제형에 응용이 가능할 것으로 기대한다.
세포투과 펩티드를 함유한 고분자 미셀 및 리포좀을 이용한 배나무 잎 추출물의 피부 흡수 증진 및 화장품 성분으로의 응용가능성에 대해 알아보기 위해 항산화, 항균 실험 및 제형별 피부 침투 실험을 진행하였다. 총 polyphenol 함량은 배나무 잎 에탄올 추출물에서 118.83 ± 9.39 mg/g, 배나무 잎 열수 추출물에서 106.89 ± 4.45 mg/g로 확인되었다. DPPH radical 소거능 측정 결과, 500 mg/L 의 농도에서 배나무 잎 에탄올 추출물이 74.39 ± 7.48%의 가장 높은 라디칼 소거능을 나타냈다. SOD 유사 활성능은 1,000 mg/L의 농도에서 열수 추출물이 91.62 ± 0.43%로 가장 높은 효능을 나타내었다. 이 후 실험으로부터 항산화, 주름 개선, 미백 활성이 확인되어 배나무 잎 추출물이 항산화 및 항균 소재로서의 실현가능성이 높다고 판단했다. 배나무 잎 에탄올 추출물을 함유한 고분자 미셀 피부침투 실험에서는 24시간 동안의 실험 결과, 총 축적된 tannic acid의 투과량은 Formulation 2(55.45 μ g/cm²), Formulation 1(46.43 μg/cm²), Formulation 0(34.36 μg/cm²)의 순서로 확인되었다. 배나 무 잎 열수 추출물을 함유한 리포좀 피부침투 실험에서는 24시간 동안의 실험 결과, 총 축적된 tannic acid의 투과량이 Formulation 5(75.01 μg/cm²), Formulation 4(64.01 μg/cm²), Formulation 3(36.60 μg/cm²)의 순서로 확인되었다. 이 연구를 통해 배나무 잎 추출물이 가지고 있는 항산화, 주름개선의 효능에 대한 가능성을 확인하였고 고분자 미셀 및 리포좀을 이용한 배나무 잎 추출물의 피부 침투 결과를 통해 향후 화장품 산업에 긍정적으로 이용될 것이라고 사료된다.
Fish skin peptide-loaded liposomes were prepared in 100 mL and 1 L solution as lab scales, and 10 L solution as a prototype scale. The particle size and zeta potential were measured to determine the optimal conditions for the production of fish skin peptide-loaded liposome. The liposome was manufactured by the following conditions: (1) primary homogenization at 4,000 rpm, 8,000 rpm, and 12,000 rpm for 3 minutes; (2) secondary homogenization at 40 watt (W), 60 W, and 80 W for 3 minutes. From this experimental design, the optimal conditions of homogenization were selected as 4,000 rpm and 60 W. For the next step, fish peptides were prepared as the concentrations of 3, 6, and 12% at the optimum manufacturing conditions of liposome and stored at 4ºC. Particle size, polydispersion index (pdI), and zeta potential of peptide-loaded liposome were measured for its stability. Particle size increased significantly as manufacture scale and peptide concentration increased, and decreased over storage time. The zeta potential results increased as storage time increased at 10 L scale. In addition, 12% peptide showed the formation of a sediment layer after 3 weeks, and 6% peptide was considered to be the most suitable for industrial application.
Excessive salt intake in body induces health risks resulting in high blood pressure or heart diseases. Therefore, the low salt concentration and salt-tasted food is needed by means of the modification of the manufacturing process. The purpose of this study is to study the effect of inhomogeneous salt localization in bread to enhance the saltiness of encapsulated salt. 0, 0.5, 1.0, 1.5, and 2.0% of liposome encapsulated salt (LS) was added into the baking of white pan bread. The final salt concentration was adjusted to 2.0% by addition of salt. After baking the bread, moisture content, loaf volume, fermentation rate, color, texture analysis, salt release rate, and sensory test were measured. From this study, moisture content had no significant difference in control and treatments (p>0.05), except for 2.0% LS. The lightness in all treatments was higher than the control’s (p<0.05), whereas there was no significant difference in hardness (p>0.05). From the sensory test, the bread added 2.0% LS showed the highest value from the salty taste. Moreover, it is related to the highest release rate of salt represented at 2.0% LS. In conclusion, the salty intensity of bread can be enhanced by the salt localization using the encapsulation of salt.
Excessive salt intake in body induces health risks resulting high blood pressure or heart diseases. Therefore, the low salt concentration and sale tasted food is needed by means of the modification of manufacturing process. The purpose of this study was to study the effect of inhomogeneous salt localization in bread to enhance the saltiness encapsulated salt. The 0, 0.5, 1, 1.5, and 2.0% of liposome encapsulated salt (LS) was added into the baking of white pan bread. The final salt concentration was adjusted at 2% by addition of salt. After baking the bread, the moisture content, loaf volume, fermentation rate, color, texture analysis, salt release rate and sensory test were measured. From this study, moisture content has no significant difference between control and treatments (p>0.05), except for 2.0% LS. Lightness of all treatments was higher than control (p<0.05), whereas, there were no significant difference in hardness (p>0.05). From the sensory test, the bread added 2.0% LS was showed the highest value from the salty taste. Moreover, it is related to the highest release rate of salt was represented at 2.0% LS. In conclusion, the salty intensity of bread can be enhanced by the salt localization using encapsulation of salt.
본 연구에서는 알킬체인의 길이가 서로 다른 benzyltrialkylammonium chloride계 화합물을 합성하여 리포좀 제조에 응용하였다. 제조된 리포좀의 평균 입도분포, 제타전위, 방출거동 및 항균성을 조사하였으며, 사슬 길이에 따른 특성을 비교하였다.리포좀의 평균 입도는 120~140 nm의 크기분포를 가졌으며 소수성 사슬의 길이가 증가할수록 큰 입 자크기를 가졌다. 리포좀 용액의 제타전위는 양이온성 계면활성제인 benzyltrialkylammonium chloride를 첨가함에 따라 +80~90 mV의 값을 가지며 향상된 분산 안정성을 보였다. 방출거동에서는 사슬 길이에 따라 방출 속도를 조절할 수 있었으며 긴 사슬의 계면활성제를 첨가한 리포좀은 증가된 서방형 방출특 성을 보였다. 또한, 리포좀의 포집효율은 25.9~27.5% 이었다.
This study was carried out to investigate the effect of liposome-coated salt (LCS) on the salty taste intensity of noodle. Dough, dried noodle, and boiled noodle with LCS were evaluated physico-chemically for water content, water binding capacity, solubility, swelling power, color, texture, cooking properties, and sensory test. There were no significant differences in water content, water binding capacity, lightness, yellowness, and texture of noodle between the noodles with liposome-coated salt and non-coated salt. For the sensory analysis, the panel did detect more salty taste at 1.0% and 2.0% of LCS compared to the control. From these results, this study demonstrates that liposome coated salt can enhance salty taste, maintaining the same salt concentration without the physical property changes of noodle.
The objective is to investigate effect of liposome coated hemicellulose on softening of carrot. To encapsulate hemicellulose in nanoliposome, 2% hemicellulase and 2% lecithin were processed by using high-speed homogenizer (10,000 rpm, 3 min) and ultrasonification (200 W, 54%). The carrot were cut into cylinder type (3×1 cm) and then immersed in distilled water (DW, control), hemicellulase (He) and nanoliposome coated hemicellulose (He/NL) for 48 h at 4oC. The final concentration of hemicellulose is 1% (w/v). The droplets properties of He, NL, He/NL analyzed using zeta-sizer. Moreover, the carrots treated different immersed solutions were characterized by measuring hardness, color, microstructural observation and enzyme activity (glucose contents). For the results, hardness of carrot immersed in He or He/NL solution decreased after 48 h by 47% or 31% (outline of carrot) and 35% or 31% (center of carrot) respectively compared to control (7,240 g). The total color difference value of all samples increased over immersion time. For microstructural observation, cell was destroyed after 24 h at He solution. For the enzyme activity, glucose contents of carrot in He solution increased than it in He/NL at 0 h sample however the enzyme activity was no significant difference with immersion time.
To investigate the effects of coated liposome from Discorea rhizoma extract (DRE) in streptozotocin (STZ)-induced, we evaluated changes in body weight, fasting blood glucose, blood insulin and blood lipid concentrations in mice. Mice were divided into four groups: (DC), diabetic DRE at 10 ㎎/㎏ (DRE-1), diabetic DRE at 50 ㎎/㎏ (DRE-2), and diabetic DRE at 250 ㎎/㎏ (DRE-3). Mice had free access to water and diet (10 weeks). The DC group showed higher blood cholesterol than the DRE-1, DRE-2, DRE-3 groups. In glucose tolerance test, the DRE-1, DRE-2, and DRE-3 groups increased after 30 minutes in decremental glycemic response area under the curve. Fasting blood glucose levels in the DRE groups significantly decreased through 4 weeks. Plasma total cholesterol, triglyceride and LDL-cholesterol concentrations were also lower in the DRE groups. On the other hand, the DRE-1, DRE-2 and DRE-3 groups showed higher HDL-cholesterol and insulin levels than the DC group. Moreover, blood glucose and lipid levels significantly decreased in streptozotocin (STZ)-induced diabetic mice treated with DRE. These results indicate that DRE may reduce elevated blood glucose levels and serum lipid concentrations in hypoglycemic and diabetic mice, suggesting its usefulness as a functional food.
콜라겐 성분을 최대로 보호하면서 안정하게 체내로 흡수 될 수 있도록 고순도 수첨 포스 파티딜콜린과 용매사출방법을 이용하여 콜라겐 리포좀을 제조하였다. 리포좀 막의 안정성을 높이기 위해 포스파티딜콜린에 콜레스테롤을 혼합하여, 에탄올과 프로필렌글리콜 혼합용매에 용해하였으며, 이온의 안정화를 위하여 PBS Buffer를 사용하였다. 다양한 변수에 의해 제조된 콜라겐 리포좀의 특성은 동적광산란광도계(DLS), 주사현미경(SEM), 편광현미경(POM)로 분석하였다.
Soybean lecithin liposomes composed phosphatidyl choline, phosphatidyl ethanolamine, phosphatidyl inositol and phosphatidic acid were prepared by using the previously developed supercritical reverse phase evaporation method. The effect of phospholipid composition on the formation of liposomes and physicochemical properties were examined by means of trapping efficiency measurements, transmission electron microscopy, dynamic light scattering and zeta potential measurements. The trapping efficiency of liposomes for D-(+)-glucose made of CNA-Ⅰ which contains approximately 95% phosphatidyl choline is higher than that of CNA-II and CNA-O which contain approximately 32% phosphatidyl choline. However there is no any difference between the trapping efficiency of liposomes for D-(+)-glucose made of CNA-II which has saturated hydrocarbons tails and that of liposomes made of CNA-O which has unsaturated hydrocarbon chains. The electron micrographs of liposomes made of CNA-II and CNA-O show small spherical liposomes with diameter of 0.1~0.25μm, while that of CNA-I shows large unilamellar liposomes with diameter of 0.2~1.2μm. These results clearly show that phospholipid structure of phosphatidylcholine allows an efficient preparation of large unilamellar liposomes and a high trapping efficiency for water soluble substances. Liposomes made of CNA-II and CNA-O remained well-dispersed for at least 14 days, while liposome suspension made of CNA-I separated in two phase at 14 days due to aggregation and fusion of liposomes. The dispersibility of liposomes made of CNA-I is lower than that of CNA-II and CNA-O due to the smallar zeta potential of CNA-I.
Production of transgenic animals for studying specific gene has been limited due to a low efficiency, lack of skilled researchers and the need for expensive equipment. Currently, the boar spermatozoa as a vector to deliver exogenous DNA into the oocyte were used to improve the efficiency of transfection rate. In this study, we revealed that the optimal conditions for DNA uptake in spermatozoa by liposome were to 90 min of incubation, 17'C, 10' spermatozoa, 4 ng/ml of exogenous DNA and 0.5% (v/v) liposome, without damage to fertility. In addition, the developmental rate to the blastocyst stage of embryo in control group was significantly higher than those embryos with exogenous DNA and liposome, whereas there were no significant differences in embryo development between the liposome and type of DNA. The transfection rates of embryo using treated spermatozoa with both liposome and circular DNA were higher than those using linear DNA. These findings raise the possibility thattreated spermatozoa with liposome/DNA complexes could be used in in vitro fertilization, and the exogenous DNA transferred into the oocytes. Taken together, we demonstrated that liposome a vector for the uptake of exogenous DNA in boar spermatozoa could improve the efficiency of sperm-mediated gene transfer in creating transgenic pig and the other domestic transgenic animals.
Gene delivery is one of the keen interests in animal industry as well as research on gene functions. Some of the in vivo gene delivery techniques have been successively used in various tissues for the gene therapy and transgenesis. Despite intensive efforts, it still remains to overcome problems of limited local and regional administration and low transgene expression. To improve the efficiency of gene delivery, a new procedure was tested. We injected exogenous DNA containing LacZ into the female or male gonads and then pulsed electric field. Electroporated gonads showed positive X-gal staining in many seminiferous tubules of the porcine fetal gonads. Exogenously introduced LacZ genes were also expressed in female porcine gonad. In addition, we demonstrated efficient gene delivery in gonad of adult mouse. Furthermore, we succeed to generate genetically modified germline cells showing GFP and positive X-gal signals. The results suggest that the newly developed gene delivery is an effective way of in vivo transfection in mammals. The developed gene delivery procedure should be useful in producing transgenic animals when combined with primary cell culture and nuclear transplantation.