검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 13

        1.
        2024.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The effects of different plasma agent species ( CF4, N2) over the conductivity of CFX cathode material were identified. Both plasma treatments have surface etching effect, while the CF4 plasma treatment has C–F bond modification effect and the N2 plasma treatment has defluorination effect. The changes of surface chemical species and porosity along the plasma agent were elucidated. Moreover, the electrochemical properties of plasma-treated CFX confirmed the effects of plasma treatments. The charge-transfer resistance of plasma-treated CFX was maximum 60.3% reduced than the pristine CFX. The effects of surface chemical modification coupled with etching along the plasma gas agents were compared and identified with their reaction mechanisms.
        4,000원
        2.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Removing CO2 gas to address the global climate crisis is one of the most urgent agendas. To improve the CO2 adsorption ability of activated carbon, nitrogen plasma surface treatment was conducted. The effect of nitrogen plasma treatment on the surface chemistry and pore geometry of activated carbon was extensively analyzed. The porosity and surface groups of the activated carbon varied with the plasma treatment time. By plasma treatment for a few minutes, the microporosity and surface functionality could be simultaneously controlled. The changed microporosity and nitrogen groups affected the CO2 adsorption capacity and CO2 adsorption selectivity over N2. This simultaneous surface etching and functionalization effect could be achieved with a short operating time and low energy consumption.
        4,000원
        3.
        2020.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        W2C is synthesized through a reaction-sintering process from an ultrafine-W and WC powder mixture using spark plasma sintering (SPS). The effect of various parameters, such as W:WC molar ratio, sintering temperature, and sintering time, on the synthesis behavior of W2C is investigated through X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM) analysis of the microstructure, and final sintered density. Further, the etching properties of a W2C specimen are analyzed. A W2C sintered specimen with a particle size of 2.0 μm and a relative density over 98% could be obtained from a W-WC powder mixture with 55 mol%, after SPS at 1700℃ for 20 min under a pressure of 50 MPa. The sample etching rate is similar to that of SiC. Based on X-ray photoelectron spectroscopy (XPS) analysis, it is confirmed that fluorocarbon-based layers such as C-F and C-F2 with lower etch rates are also formed.
        4,000원
        4.
        2017.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Reactive Ion Etching (RIE) and wet etching are employed in existing texturing processes to fabricate solar cells. Laser etching is used for particular purposes such as selective etching for grooves. However, such processes require a higher level of cost and longer processing time and those factors affect the unit cost of each process of fabricating solar cells. As a way to reduce the unit cost of this process of making solar cells, an atmospheric plasma source will be employed in this study for the texturing of crystalline silicon wafers. In this study, we produced the atmospheric plasma source and examined its basic properties. Then, using the prepared atmospheric plasma source, we performed the texturing process of crystalline silicon wafers. The results obtained from texturing processes employing the atmospheric plasma source and employing RIE were examined and compared with each other. The average reflectance of the specimens obtained from the atmospheric plasma texturing process was 7.88 %, while that of specimens obtained from the texturing process employing RIE was 8.04 %. Surface morphologies of textured wafers were examined and measured through Scanning Electron Microscopy (SEM) and similar shapes of reactive ion etched wafers were found. The Power Conversion Efficiencies (PCE) of the solar cells manufactured through each process were 16.97 % (atmospheric plasma texturing) and 16.29% (RIE texturing).
        4,000원
        5.
        2009.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We report on the capacitively coupled O2 plasma etching of PMMA and polycarbonate (PC) with a diffusion pump. Plasma process variables were process pressure and CCP power at 5 sccm O2 gas flow rate. Characterization was done in order to analyze etch rate, etch selectivity, surface roughness, and morphology using stylus surface profilometry and scanning electron microscopy. Self bias decreased with increase of process pressure in the range of 25~180 mTorr. We found an important result for optimum pressure for the highest etch rate of PMMA and PC, which was 60 mTorr. PMMA and PC had etch rates of 0.46 and 0.28 μm/min under pressure conditions, respectively. More specifically, etch rates of the materials increased when the pressure changed from 25 mTorr to 60 mTorr. However, they reduced when the pressure increased further after 60 mTorr. RMS roughnesses of the etched surfaces were in the range of 2.2~2.9 nm. Etch selectivity of PMMA to a photoresist was ~1.5:1 and that of PC was ~0.9:1. Etch rate constant was about 0.04 μm/minW and 0.02 μm/minW for PMMA and PC, respectively, with the CCP power change at 5 sccm O2 and 40 mTorr process pressure. PC had more erosion on the etched sidewall than PMMA did. The OES data showed that the intensity of the oxygen atomic peak (777.196 nm) proportionally increased with the CCP power.
        4,000원
        6.
        2009.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This study investigated dry etching of acrylic in capacitively coupled SF6, SF6/O2 and SF6/CH4 plasma under a low vacuum pressure. The process pressure was 100 mTorr and the total gas flow rate was fixed at 10 sccm. The process variables were the RIE chuck power and the plasma gas composition. The RIE chuck power varied in the range of 25~150 W. SF6/O2 plasma produced higher etch rates of acrylic than pure SF6 and O2 at a fixed total flow rate. 5 sccm SF6/5 sccm O2 provided 0.11μm/min and 1.16μm/min at 25W and 150W RIE of chuck power, respectively. The results were nearly 2.9 times higher compared to those at pure SF6 plasma etching. Additionally, mixed plasma of SF6/CH4 reduced the etch rate of acrylic. 5 sccm SF6/5 sccm CH4 plasma resulted in 0.02μm/min and 0.07μm/min at 25W and 150W RIE of chuck power. The etch selectivity of acrylic to photoresist was higher in SF6/O2 plasma than in pure SF6 or SF6/CH4 plasma. The maximum RMS roughness (7.6 nm) of an etched acrylic surface was found to be 50% O2 in SF6/O2 plasma. Besides the process regime, the RMS roughness of acrylic was approximately 3~4 nm at different percentages of O2 with a chuck power of 100W RIE in SF6/O2 plasma etching.
        4,000원
        7.
        2008.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        이 연구에서는 플라즈마 제염 기술의 실용화를 위해 , , 등의 반응성 플라즈마 기체를 이용하여 원자력 시설의 주요 오염원인 코발트 핵종에 대한 표면 제염 모의실험을 수행하였다. 디스크 형태의 금속코발트에 대하여 시편 표면 온도를 변수로 플라즈마 식각 실험을 수행한 결과 반응율은 에서 기체의 경우 그리고 와 기체의 경우 각각 과 이었으며, 이들 반응의 활성화에너지는 각각 39.4 kJ/mol, 42.1 kJ/mol, 116.0 kJ/mol이었다. 이와 함께 AES (Auger Electron Spectroscopy)를 이용하여 반응 생성물 성분 분석 결과 이들 반응의 주요 반응 기구는 코발트의 불화 반응임이 밝혀졌다. 이 연구를 통해 확보된 의 금속 표면 식각율은 주요 반도체 공정의 식각율을 뛰어넘는 높은 식각율로 플라즈마 제 염 기술의 실용화를 앞당길 수 있는 고무적인 결과라 할 수 있을 것이다.
        4,000원
        8.
        2007.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We investigated dry etching of acrylic (PMMA) in O2/N2 plasmas using a multi-layers electrode reactive ion etching (RIE) system. The multi-layers electrode RIE system had an electrode (or a chuck) consisted of 4 individual layers in a series. The diameter of the electrodes was 150 mm. The etch process parameters we studied were both applied RIE chuck power on the electrodes and % O2 composition in the N2/O2 plasma mixtures. In details, the RIE chuck power was changed from 75 to 200 W.% O2 in the plasmas was varied from 0 to 100% at the fixed total gas flow rates of 20 sccm. The etch results of acrylic in the multilayers electrode RIE system were characterized in terms of negatively induced dc bias on the electrode, etch rates and RMS surface roughness. Etch rate of acrylic was increased more than twice from about 0.2μm/min to over 0.4μm/min when RIE chuck power was changed from 75 to 200 W. 1 sigma uniformity of etch rate variation of acrylic on the 4 layers electrode was slightly increased from 2.3 to 3.2% when RIE chuck power was changed from 75 to 200 W at the fixed etch condition of 16 sccm O2/4 sccm N2 gas flow and 100 mTorr chamber pressure. Surface morphology was also investigated using both a surface profilometry and scanning electron microscopy (SEM). The RMS roughness of etched acrylic surface was strongly affected by % O2 composition in the O2/N2 plasmas. However, RIE chuck power changes hardly affected the roughness results in the range of 75-200 W. During etching experiment, Optical Emission Spectroscopy (OES) data was taken and we found both N2 peak (354.27 nm) and O2 peak (777.54 nm). The preliminarily overall results showed that the multi-layers electrode concept could be successfully utilized for high volume reactive ion etching of acrylic in the future.
        4,000원
        9.
        2006.04 구독 인증기관·개인회원 무료
        In this study, the plasma sprayed and coatings have been investigated for applications of microelectronic components. The plasma sprayed coatings had a well-defined splatted lamellae microstructure, intersplat pores and a higher amount of microcracks within the splats. The plasma sprayed coating had a relatively lower hardness of 300-400Hv, compared to 650-800Hv for coating, and would be readily damaged by mechanical attacks such as erosion, wear and friction. For a reactive ion etching against F-containing plasmas, however, the coating had a much higher resistance than the coating because of the reduced erosion rate of by-products.
        12.
        2000.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        BCI3/H2/Ar ICP(Inductively Coupled Plasma)를 이용한 GaN이 건식식각에 있어서 공정변수들이 식각 특성에 미치는 영향을 분석하고 적정조건을 도출하였다. 연구 결과 식각속도와 측벽수직도 공히 ICP 전력, bias 전압과 BCI3 조성의 증가, 공정압력의 감소에 의해 현저히 증가하며, 온도의 증가에 따라 다소간 증가하였고, 온도의 증가에 따라 다소간 증가하였고, BCI3조성이 가장 큰 영향을 미쳤다. 표면거칠기는 bias 전압 증가에 의해 크게 향상, BCI3 조성의 감소에 따라 향상되었으며 다른 변수는 큰 영향을 미치지 않았다. 결과적으로 ICP 전력 900W, bias 전압 400V, BCI3 조성 60%, 공정압력 4mTorr의 조건에서 175nm/min 정도의 CI2 사용 시와 유사한 높은 식각속도와 평탄한 표면이 얻어졌다. Bias 전압이 낮은 경우 식각 후 시료 표면에 GaCx로 추정되는 식각부산물이 관찰되었다.
        4,000원
        13.
        1998.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        자화된 유도결합형 C4F8 플라즈마로 SiO2를 건식식각시 실리콘 표면에 발생하는 손상과 오염에 대하여 연구하였다. 오염의 분석을 위해서 XPS, SIMS, TEM을 사용하였으며, 손상정도를 측정하기 위해서 HRTEM과 Schottky-diode 구성을 통한 I-V특성 측정을 사용하였다. 유도 결합형 C4F8 플라스마에 0에서 18Gauss까지의 자장이 가해짐에 따라서 실리콘 표면에 생기는 잔류막의 두께가 SiO2식각속도와 선택비의 증가와 함께 증가하였으며, XPS를 통하여 그 조성이 fluorine-rich에서 carbon-rich 한 상태로 변화함을 알 수 있었다. 자장을 가하지 않는 상태에서는 표면에서 40Å부근까지 고밀도의 손상층이 관찰되었으나, 자장을 가함에 따라서 노출된 손상층의 깊이는 깊어지나 그 밀도는 줄어들음을 HRTEM을 통하여 관찰 할 수 있었다. Schottky-diode를 통한 I-V특성곡선의 분석으로 자장이 증가함에 따라서 전기적인 손상이 감소함을 알 수 있었다.
        4,000원