The printing process can have to print various colors with a limited capacity of printing facility such as ink containers that are needed cleaning to change color. In each container, cleaning time exists to assign corresponding inks, and it is considered as the setup cost required to reduce the increasing productivity. The existing manual method, which is based on the worker’s experience or intuition, is difficult to respond to the diversification of color requirements, mathematical modeling and algorithms are suggested for efficient scheduling. In this study, we propose a new type of scheduling problem for the printing process. First, we suggest a mathematical model that optimizes the color assignment and scheduling. Although the suggested model guarantees global optimality, it needs a lot of computational time to solve. Thus, we decompose the original problem into sequencing orders and allocating ink problems. An approximate function is used to compute the job scheduling, and local search heuristic based on 2-opt algorithm is suggested for reducing computational time. In order to verify the effectiveness of our method, we compared the algorithms' performance. The results show that the suggested decomposition structure can find acceptable solutions within a reasonable time. Also, we present schematized results for field application.
In this study, a spray dryer is used to make granules of Y2O3 and YF3, and then Y5O4F7 is synthesized following heat treatment of them under Ar gas atmosphere at 600 oC. Single and binary monomer mixtures are compared and analyzed to optimize photocurable monomer system for DLP 3D printing. The mixture of HEA and TMPTA at 8:2 ratio exhibits the highest photocuring properties and low viscosity with shear thinning behavior. The optimized photocurable monomer and synthesized Y5O4F7 are therefore mixed and applied to printing process at variable solid contents (60, 70, 80, & 85 wt.%) and light exposure times. Under optimal light exposure conditions (initial exposure time: 1.2 s, basic exposure time: 5 s), YOF composites at 60, 70 & 80 wt.% solid contents are successfully printed. As a result of measuring the size of the printed samples compared to the dimensions of the designed bar type specimen, the deviation is found to increase as the YOF solid content increases. This shows that it is necessary to maximize the photocuring activity of the monomer system and to optimize the exposure time when printing using a high-solids ceramic slurry.
Additive manufacturing technology, 3D printing, has been applied to various industrial fields. This production method is a production method with less material, cost and time savings, and less restrictions in shape, and is also making a leap forward in the field of eco-friendly product production. In particular, FDM (fused depositon modeling) method of extrusion lamination manufacturing is widely applied in products and medical fields. And as an alternative to mold manufacturing, it is widely used in manufacturing plastic products and parts. Therefore, this paper quantitatively and qualitatively analyzes the mechanical properties according to the processing factors of the specimen through the processing of the ABS tensile specimen printed by the FDM type 3D printer and derives the optimum value.
The 3D printing process provides a higher degree of freedom when designing ceramic parts than the conventional press forming process. However, the generation and growth of the microcracks induced during heat treatment is thought to be due to the occurrence of local tensile stress caused by the thermal decomposition of the binder inside the green body. In this study, an alumina columnar specimen, which is a representative ceramic material, is fabricated using the digital light process (DLP) 3D printing method. DTG analysis is performed to investigate the cause of the occurrence of microcracks by analyzing the debinding process in which microcracks are mainly generated. HDDA of epoxy acrylates, which is the main binder, rapidly debinded in the range of 200 to 500oC, and microcracks are observed because of real-time microscopic image observation. For mitigating the rapid debinding process of HDDA, other types of acrylates PETA, PUA, and MMA are added, and the effect of these additives on the debinding rate is investigated. By analyzing the DTG in the 25 to 300oC region, it is confirmed that the PETA monomer and the PUA monomer can suppress the rapid decomposition rate of HDDA in this temperature range.
3D printing technology is a processing technology in which 3D structures are formed by fabricating multiple 2D layers of materials based on 3D designed digital data and stacking them layer by layer. Although layers are stacked using inkjet printing to release various materials, it is still rare for research to successfully form a product as an additive manufacture of multi-materials. In this study, dispersion conditions are optimized by adding a dispersant to an acrylic monomer suitable for inkjet printing using Co3O4 and Al2O3. 3D structures having continuous composition composed of a different ceramic material are manufactured by printing using two UV curable ceramic inks whose optimization is advanced. After the heat treatment, the produced structure is checked for the formation and color of the desired crystals by comparing the crystalline analysis according to the characteristics of each part of the structure with ceramic pigments made by solid phase synthesis method.
This paper aims at finding some lessons applicable to successful implementation of ‘The 3D Printing R/D Project’ through both examining the process of adopting overseas industrialized housing production technological knowhow by home builders during the 1970's~1980's period and thereafter until now the various efforts to adjust the technologies efficiently to the Korea‘s unique situation. Some meaningful lessons can be summarized as follows; Ⅰ) Deep understanding of 3DP technological know-why along with its inheritance, Ⅱ) Readjusting of R/D period and goals(cf. Global leader Winsun's 15 years experiment), Ⅲ) Restructuring for more collaborative R/D B&E system among participating researchers Ⅳ) Fostering 3DP expert-engineers and technicians from the early stage, Ⅴ) Clearing legal barriers in users' adopting 3DP methods necessary, Ⅵ) Development of appropriate building material besides concrete. Therefore, it is highly recommended that the above-mentioned 6 lessons positively accepted and applied to the Research Implementation Plan in due course, especially by KICT consortium and KAIA under the guidance of Ministry of Land, Infrastructure and Transport.
In this study, H13 tool steel sculptures are built by a metal 3D printing process at various laser scan speeds. The properties of commercial H13 tool steel powders are confirmed for the metal 3D printing process used: powder bed fusion (PBF), which is a selective laser melting (SLM) process. Commercial H13 powder has an excellent flowability of 16.68 s/50 g with a Hausner ratio of 1.25 and a density of 7.68 g/cm3. The sculptures are built with dimensions of 10 × 10 × 10 mm3 in size using commercial H13 tool steel powder. The density measured by the Archimedes method is 7.64 g/cm3, similar to the powder density of 7.68 g/cm3. The hardness is measured by Rockwell hardness equipment 5 times to obtain a mean value of 54.28 HRC. The optimum process conditions in order to build the sculptures are a laser power of 90 W, a layer thickness of 25 μm, an overlap of 30%, and a laser scan speed of 200 mm/s.
Ink-jet printing techniques with ceramic ink, which contains ceramic pigments as colorant, are in increasingly use in the ceramic industry. Generally, ceramic pigments that are produced by conventional method show diameters of several micrometers; these micrometer sized particles in the ink-jet printing process can cause undesirable behavior such as print head nozzle clogging. To prevent this problem, a particle size reduction process is required. In this study, CMYK (cyan, magenta, yellow, black) pigments were synthesized via solid state method. Each pigment particle was milled to submicron size by an attrition mill. The effects of micronizing on the morphology, mechanical property, crystal structure and color property of the CMYK ceramic pigments were investigated by field emission scanning electron microscopy (FE-SEM), particle size analysis (PSA), X-ray diffraction (XRD) and CIE L*a*b*.
Graphene has shown exceptional properties for high performance devices due to its high carrier mobility. Of particular interest is the potential use of graphene nanoribbons as field-effect transistors. Herein, we introduce a facile approach to the fabrication of graphene nanoribbon (GNR) arrays with ~200 nm width using nanoimprint lithography (NIL), which is a simple and robust method for patterning with high fidelity over a large area. To realize a 2D material-based device, we integrated the graphene nanoribbon arrays in field effect transistors (GNR-FETs) using conventional lithography and metallization on highly-doped Si/SiO2 substrate. Consequently, we observed an enhancement of the performance of the GNRtransistors compared to that of the micro-ribbon graphene transistors. Besides this, using a transfer printing process on a flexible polymeric substrate, we demonstrated graphene-silicon junction structures that use CVD grown graphene as flexible electrodes for Si based transistors.
The application of sublimation transfer printing is widely expanded in the textile industry according to the growth of IT technology. Therefore, its improvement of manufacturing process is strongly needed. In this paper, new manufacturing process of sublimation transfer printing by combining conveyor system and hot plate pressing is developed. New process has improved quality and productivity of sublimation transfer printing. It is shown that the new process has better indices than existing process in the required time, man power, production output and sales. New process is able to cope with mass production and various manufacturing condition actively.
The goal of this study is optimization of transparency liquid chemical coating process. At coating process in the maintenance of the coating gap is an important factor. Specially, at a small split from the substrate using the existing methods is difficult to maintain the uniformity of coating. In this study, slit coating uniformity and compare inkjet uniformity and thickness profile was analyzed using alpha-step. Also, the pencil hardness test and the color difference measurement were performed. As a result, changes of the coating process need to be made depending on the type of substrate and inkjet coating was suitable for substrate of a small split.
Thermoelectric-thick films were fabricated by using a screen printing process of n and p-type bismuth-telluride-based pastes. The screen-printed thick films have approximately 30 in thickness and show rough surfaces yielding an empty gap between an electrode and the thick film. The gap might result in an increase of an electrical resistivity of the fabricated thick-film-type thermoelectric module. In this study, we suggest a conductive metal coating onto the surfaces of the screen-printed paste in order to reduce the contact resistance in the module. As a result, the electrical resistivity of the thermoelectric module having a gold coating layer was significantly reduced up to 30% compared to that of a module without any metal coating. This result indicates that an introduction of conductive metal layers is effective to decrease the contact resistivity of a thick-film-typed thermoelectric module processed by screen printing.
This paper describes an improved strategy for controlling the adhesion force using both the antiadhesion and adhesion layers for a successful large-area transfer process. An MPTMS (3-mercaptopropyltrimethoxysilane) monolayer as an adhesion layer for Au/Pd thin films was deposited on Si substrates by vapor self assembly monolayer (VSAM) method. Contact angle, surface energy, film thickness, friction force, and roughness were considered for finding the optimized conditions. The sputtered Au/Pd (~17 nm) layer on the PDMS stamp without the anti-adhesion layer showed poor transfer results due to the high adhesion between sputtered Au/Pd and PDMS. In order to reduce the adhesion between Au/Pd and PDMS, an anti-adhesion monolayer was coated on the PDMS stamp using FOTS (perfluorooctyltrichlorosilane) after O2 plasma treatment. The transfer process with the anti-adhesion layer gave good transfer results over a large area (20 mm × 20 mm) without pattern loss or distortion. To investigate the applied pressure effect, the PDMS stamp was sandwiched after 90˚ rotation on the MPTMS-coated patterned Si substrate with 1-μm depth. The sputtered Au/Pd was transferred onto the contact area, making square metal patterns on the top of the patterned Si structures. Applying low pressure helped to remove voids and to make conformal contact; however, high pressure yielded irregular transfer results due to PDMS stamp deformation. One of key parameters to success of this transfer process is the controllability of the adhesion force between the stamp and the target substrate. This technique offers high reliability during the transfer process, which suggests a potential building method for future functional structures.
A new display device development using CRT and CDT technology is required, which has concepts of flatness and slimness. Screen printing technology can be one of the solutions. In this case, good panel flatness is the precondition. Therefor, we did process capability analysis of panel flatness and regression analysis between panel flatness and BM(black matrix) position by experiments.
63Sn-37Pb에 Cu6Sn5를 분산시킨 760μm크기의 솔더범프를 Au(0.5μm)/Ni(5μm)/Cu(27±20μm) BGA 기판에 스크린)/Ni(5im)/Cu(27:201m) B3GA 기판에 스크린 프린팅법으로 제조하여, 리플로우 피크온도 유지시간, 150˚C 시효처리 시간에 따른 전단강도를 분석하였다. Cu6Sn5를 첨가한 솔더범프는 피크온도에서 30초간 유지시에는 63Sn-37Pb 솔더범프보다 높은 전단강도를 나타내었으나, 피크온도 유지시간을 60초 이상으로 증가시킴에 따라 전단강도가 63Sn-37Pb 솔더범프보다 저하하였다. 전단시험 후 솔더범프의 파단면은 초기에 전단 균열의 점진적인 전파에 의해 발생된 파괴부위와 점진적 균열전파에 의한 면적 감소로 솔더범프가 급격히 떨어져 나가면서 발생한 파괴부위로 구분할 수 있었다 피크온도 유지시간, 150˚C 시효처리 시간 및 Cu6Sn5 첨가량에 무관하게 점진적 파괴모드에 의한 균열 전파길이가 증가할수록 솔더범프의 전단강도가 감소하였다.감소하였다.
Digital printing fabrics are widely applied to banners in outdoors and also many wastes generated in digital fabric process are produced, however most of them are threw into fire or buried. It can also release more harmful gas into the air in the destructing process by fire. Digital printing fabrics are made the silica and several resins coated polyester textiles and most raw materials should be imported from overseas. So recycling technology is strongly demanded for wastes generated in digital printing fabric process. We investigated about recycled polyester from wastes of digital printing fabric by separating the polyester fabric and attached materials such as silica and several resins. We have setup the manufacturing system of eliminating process including steam condition, cleaning and drying process for it. We also developed the special chemical additives such as NaOH, surfactant and defoamer to eliminate the coating layer from the polyester textiles in digital printing fabric and also optimized formulation. As a result, we could obtain the recycled polyester textiles having eliminating rate of coating layer more than 95% and approximately equal performance to that of pure polyester textiles.
This is a study on the volatile organic compounds(VOCs) concentrator with zeolite adsorptive honey rotor and catalytic combustion system for abating VOCs emitted from printing industry. VOCs emitted from the printing industry is mainly caused by organic solvent of printing ink. The content of organic solvents in printing ink varies from 40% to 75% and its content in the gravure ink is higher than that in any other ink. The average concentrations of each VOCs are 139 ppm for toluene, 152.1 ppm for MEK, 256.9 ppm for methanol and 42.9 ppm for isopropyl alcohol. We used zeolite honeycomb for absorbent of VOCs concentrator and palladium for catalyst combustion system. This system abated over 96% of emitted total VOCs, 98% of toluene, 100% of MEK, 92% of methanol and 100% of isopropyl alcohol. It is concluded that the low-leveled high-volume VOCs emitted from printing process were removed almost by concentrator with zeolite adsorptive honey rotor and catalytic combustion system.