관측지점의 위치를 살펴보면 해안으로부터 수영은 약 5m정도이고 해운대는 약 1km정도 떨어져 있다. 하지만 해운대에서의 해풍시작시간이 수영보다 빨리 나타난다. 따라서 국지순환모형인 LCM을 이용하여 수영과 해운대에서 해풍시작시간에 대한 지형의 효과를 수치모의 하였다. 이러한 현상은 야간의 복사냉각에 의해 형성된 흐름에 의한 것으로 분석되었는데, 도심지를 둘러싸고 있는 고지대의 경사면을 따라서 수렴된 공기가 가장 저지대인 수영지역으로 흘러가기 때문에 나타난 것으로 이러한 현상은 일출 후에도 나타난다. AWS자료를 분석한 결과, 수영에서 해운대에 비해 약 3배정도 강한 강풍현상이 나타났는데, 이는 수영지역이 야간공기의 유출구이기 때문이다. 이를 통해 지형조건이 해풍의 시작에 중요한 역할을 한다는 것을 알 수 있었다.
본 연구는 강릉 연안지역의 해풍 선정기준과 단 시간 해풍의 기후학적 특성에 관한 것이다. 강릉 연안지역에서의 해풍 선정기준은 다음과 같다. 즉, 육풍에서 해풍으로, 그리고 그 반대로의 분명한 풍향 변화가 있는 가운데 북동 기류와 같이 지형적 원인에 의한 풍향 변화는 해풍 선정에서 제외시켰다. 그리고 해풍이 1시간 또는 2시간만 지속된 경우도 포함시켰다. 이렇게 선정된 해풍 가운데 강릉 연안 지역에서의 가장 큰 특징인 단 시간 해풍에 대한 기후학적 특성을 10년동안(1988년∼1997년)의 자료를 통해 분석하였고 계절별 발생빈도, 발생시간, 풍향, 풍속, 기온으로 구성되었다. 마지막으로 본 연구는 강릉 연안지역 뿐만 아니라 동해안 지역 해풍의 기후학적 특성활용에 대해 간략히 논하였다.
A two-dimensional land and sea breeze model has been used for the investigation of the circulation over Cheju Island. The model which has different diffusion coefficients for the heat and for the momentum transfer is subdivided into two layers: the surface layer and Ekman layer. A Z^* coordinate system and non-uniform mesh have been applied for the model simulation. From the model simulation, we were able to conclude that low-level wind was much stronger over Cheju city than over Seoguipo city during sea breeze, and vice versa during land breeze. The sea breeze circulation was distinctive over Seoguipo area, and weak land breeze circulation was seen over Cheju area. Meanwhile sea breeze and land breeze circulations over Cheju and Seoguipo area, respectively, were not found in the model simulation.
최근 10년간(1977년~1986년) 제주시와 서귀포시의 지상기상자료를 분석하여 제주도지방의 해륙풍의 기후학적 특성을 조사한 결과를 요약하면 다음과 같다. 1. 해륙풍의 발생빈도는 월별로는 8월(약 15.5%)이 가장 높고 그 다음이 9월, 10월, 5월, 11월의 순이다. 춘계보다는 추계가 더 발생빈도가 높으며 동계 매월 평균(약 5%)가 가장 낮다. 2. 해풍은 제주도의 북부해안이 남부해안보다 연평균 약 30분 정도 더 일찍 발생하고 약 1시간정도 늦게 소멸한다. 반대로 육풍은 남부해안이 북부보다 연평균 1시간 정도 일찍 발생하나 연평균 소멸시각은 남북해안이 비슷하다. 제주도지방의 해풍의 발생시각은 연평균 9~10시로 남해안 지방(13~14시)보다 약 4시간 이르며, 소멸시각은 연평균 17~19시로 역시 남해안지방(19~21시)보다 약 2시간 정도 이르다. 3. 해풍의 연평균 지속시간은 북부해안이 남부해안보다 약 1시간 정도 길고, 육풍의 그것은 반대로 약 1시간 정도 짧게 나타난다. 계절별로는 해풍의 경우 하계가 동계보다 길고 육풍의 경우는 또 그 반대이다. 해풍에서 육풍으로의 전이시간은 하계가 길고 동계가 짧은 경향을 보이며, 육풍에서 해풍으로의 전이시간은 계절적인 특징이 나타나지 않는다. 4. 해풍의 최대풍속의 출현시각은 연 평균적으로 북부해안(14.0시)보다 남부(13.4)가 다소 일찍 나타나나, 육풍은 비슷한 양상(약 2.5시)을 보여주며, 해풍이나 육풍 모두 월평균 출현시각의 계절적 특징은 뚜렷하지 않다. 그리고 해풍과 육풍의 월평균 최대풍속은 각각 남북해안 모두 비슷하고 연평균으로는 해풍(약 4.1m/s)이 육풍(약 3.3m/s)보다 다소 강하다.
산천지방의 해풍은 사천부근의 지형, 특히 사천만과 소백산맥 등의 지형적인 영향으로 인하여 다음과 같은 특성을 가지고 있다. 1. 해륙풍의 발생빈도는 평균적 98.1일 (26.9%)로 김해지방의 56.8일 (15.5%) 및 부산지방의 65.8일 (19.0%)보다 높으며, 3월이 가장 많고 7월이 가장 작다. 2. 해풍의 평균 발생 시각은 13.3시로서 김해지방 (13.9시)보다 여름철을 제외하고는 빠르게 발생한다. 또, 평균 소면시각은 19.3시로서 김해지방 (20.3시)보다 빠르게 감소하며, 평균 지속시간은 5.9시간으로 김해지방(6.5시간)보다 겨울을 제외하고는 짧게 나타난다. 3. 해풍의 평균풍속은 5.8kts로서 김해지방 (6.8kts)과 부산지방(7.8kts)보다 약하며, 4월(7.7kts)이 가장 강하고 12월(4.8kts)이 가장 약하게 나타난다. 4. 해풍의 고도는 해풍발생과 함께 높아지고 해풍이 소멸되면서 점점 낮아진다. 때때로 21시 이후에도 1000 feet 이상의 고도까지 해풍이 존재한다
This research investigated the characteristics of fine particle concentration and ionic elements of PM2.5 during sea breeze occurrences during summertime in Busan. The PM10 and PM2.5 concentrations of summertime sea breeze occurrence days in Busan were 46.5 ㎍/㎥ and 34.9 ㎍/㎥, respectively. The PM10 and PM2.5 concentrations of summertime non-sea breeze occurrence days in Busan were 25.3 ㎍/㎥ and 14.3 ㎍/㎥, respectively. The PM2.5/PM10 ratios of sea breeze occurrence days and non-sea breeze occurrence days were 0.74 and 0.55, respectively. The SO4 2-, NH4 +, and NO3 - concentrations in PM2.5 of sea breeze occurrence days were 9.20 ㎍/㎥, 4.26 ㎍/㎥, and 3.18 ㎍/㎥ respectively. The sulfur oxidation ratio (SOR) and nitrogen oxidation ratio (NOR) of sea breeze occurrence days were 0.33 and 0.05, respectively. These results indicated that understanding the fine particle concentration and ionic elements of PM2.5 during sea breeze summertime conditions can provide insights useful for establishing a control strategy of urban air quality.
This work investigates the relationship between the sea breeze circulation and ozone concentrations during cold water events in the southeastern coastal area of the Korean Peninsula, where coastal upwelling frequently occur.
This analysis was performed based on the classification of two categories, such as cold water and non-cold water events, over the period of 2000-2009. The low air temperature (0.5℃), low SST (5℃) and the wind direction(southerly) are the features of the cold water events in the Southeastern coastal area. Moreover, ozone concentrations in the cases of the sea breeze circulation and cold water events were significantly lower (below 30 ppb) than those (70∼100 ppb) in the non-clod water events, because of the low air temperature (10∼20℃) and high wind speed (3∼5 m/s) around the southeastern coastal area.
The seasonal variations of ozone (O3) concentrations were investigated with regard to the relationship between O3 and wind distributions at two different sites (Jung Ang (JA): a semi-closed topography and Seo Chang (SC): a closed topography) within a valley city (Yangsan) and their comparison between these sites (JA and SC) and two non-valley sites (Dae Jeo (DJ) and Sang Nam (SN)) located downwind from coastal cities (Busan and Ulsan). This analysis was performed using the data sets of hourly O3 concentrations, meteorological factors (especially, wind speed and direction), and those on high O3 days exceeding the 8-h standard (60 ppb) during 2008-2009. In summer and fall (especially in June and October), the monthly mean values of the daily maximum O3 concentrations and the number of high O3 days at JA (and SC) were relatively higher than those at DJ (and SN). The increase in daytime O3 concentrations at JA in June was likely to be primarily impacted by the transport of O3 and its precursors from the coastal emission sources in Busan along the dominant southwesterly winds (about 5 m/s) under the penetration of sea breeze condition, compared to other months and sites. Such a phenomenon at SC in October was likely to be mainly caused by the accumulation of O3 and its precursors due to the relatively weak winds under the localized stagnant weather condition rather than the contribution of regional transport from the emission sources in Busan and Ulsan.
In order to clarify the relation between sea breeze penetration and Planetary Boundary Layer development in southeastern part of the Korean Peninsula, several numerical assessments were carried out using atmospheric numerical model WRF(Weather Research and Forecasting). Compared with onset time of sea breeze at eastern coast area(Uljin), the time at southern coast region(Masan) with complex costal line tend to delay for several hours. The penetration patterns of sea breeze between two coastal regions are some different due to the shape of their coastal line and back ground topography.
Intensified valley wind due to high topography of lee side of Uljin can help penetration of sea breeze at early time. So penetration of sea breeze at early time often prevent PBL to develop at Uljin and lower PBL height last for a day time. But because of late penetration of sea breeze at Masna, PBL Height dramatically decrease after 1500LST. The distribution of front genesis function based on the heat and momentum variation are explained obviously the sea breeze penetration patterns and agreed well with the PBL height distribution.
The urban pollution if affected by local environmental, so it is necessary to consider area characteristics such as emission source and meteorological phenomena, in studying urban air pollution. Ulsan is laocated on south-east coast and has many industrial facilities, so many people have concerned about air pollution. This study contain conducting numerical simulation of air pollutant concentration considered land and sea breeze in Ulsan area with the numerical model.
We would like to investigate the strong wind phenomenon effecting to the onset of a sea breeze. It is general the fact that the onset time of a sea breeze is mainly affected according to the distance from the coastline but we find the reversal fact. The onset time at Suyoung is faster than that at Haeundae in spite of the observation site of Suyoung is 5 m and that of Haeundae is 1 km away from the coastline. This is the reason that the nighttime air is converged the lower area by surface cooling and then it is strongly drained onto the lowest area, Suyoung river until the sunrise. it is proved by observation data at Suyoung and Haeundae.
Estimating dimensions of attractors are the most basic tools to analyze properties of chaotical dynamic systems. In this paper, we estimate correlation dimensions of meteorological variables, such as wind speed (v) and temperature (T) observed in Kimhae International Airport when the land-sea breeze circulation is appeared and find low non-integer values that reflect the deterministic chaos characterizing the dynamics. We compare the results with the correlation dimensions of 2-dimensional model that is calculated by finite element method.
Though the correlation dimensions of the calculated wind speed (v) are less than those of the observed wind speed (v), we can suggest that the land-sea breeze circulation has not a unique mechanism. The land-sea breeze phenomenon is a complicated dynamics, which is constructed with various scale motions of atmosphere. In further research, we hope to find more accurate dynamics of land-sea breeze through wide observations and using of more sophisticated prediction models.
We have analyzed focusing on the characteristics, speed and width of sea breeze front in Pusan coastal area using the meteorological data observed at Kimhae air force meteorological station because the presence of the front has important effects on the distribution of air pollution.
The inland penetration of sea breeze front was recognized by steep variation of meteorological parameters(wind direction, wind speed, temperature, dew point temperature, air pressure, relative humidity) before and after its passage and the variation of SO_2 concentration, the speed and width of the sea breeze front was 2.07m/s and 217m, respectively.
The structure and inland penetration of sea breeeze front should be taken into account whenever a model is to be compared with detailed field measurements.
The surface meteorological and upper layer meteorological observation carried out to investigate influences of sea breeze effect on lower layer atmosphere at Gori nuclear power plant for 29∼30 July, 1996.
According to surface meteorological data, the inflow of sea breeze was occurred 11:30 on 29 July, 10:30 on 30 July, respectively at observation site. And the meteorological tower data showed that wind direction of sea breeze was identified as south-westerly, and wind speed of 58 m was 2 times stronger than that of 10 m.
It is notworthy that surface inversion layer which built from the night time to daybreak of next day was not broken off by seab reeze`s inflow for daytime, and strong inversion layer observed at 47∼243 m with moderately stable class (F) by URC. It was found that strong stable layer of potential temperature appeared at that layer, maximum relative humidity observed at the bottom of inversion layer and maximum mixing ratio observed in the low of inversion layer.
Air pollution characteristics and the influence of sea breeze on surface ozone concentration were studied using the data measured at 7 air quality continuous monitoring stations from June to September using 3 years (1990, 1993, 1994) in Pusan coastal area.
Among the 246 sea breeze days for research period, there were approximately 89 sea breeze days (36%) from June to September. And there were 120 the episode days (68%) of ozone greater than or equal to 60 ppb in summer season. In 89 sea breeze days, the episode day was highly marked as 56 days (63%). So, we knew that the sea breeze greatly affects the occurence of ozone episode day. the ozone concentration under the condition of the sea breeze increase about 40% in the daytime. Frequencies distribution of O3 concentration for sea breeze moved toward high concentration class.
The characteristics of ozone concentration in relation to meteorological conditions of sea breeze is significant because we can discover major weather factors for eastablishing an air pollutionweather forecast system. For further study about meterological approach method for photochemical air pollution, it is necessary to explain the characteristics of atmosphere below 1,000 m, especially concerning the formation mechanism of inversion layers. And finally, we will study the relationships to synoptic weather conditions and vertical structure and diurnal variation of local wind systems including sea breeze, and the vertical movements of atmosphere in the city.
Air pollution characteristics and the influence of sea breeze on air pollution concentration were studied using the data measured at 7 air quality continuous monitoring stations in Pusan, 1993. Maximum air pollution concentration in Pusan was Gamjeondong for SO_2, Sinpyeongdong for TSP, Daeyeondong for O_3, Kwangbokdong for NO_2, Beomcheondong for CO and all substances were under annual ambient air quality standards. Increased rate of concentration for sea breeze was 24.4% for SO_2, 31.5% for TSP, 80% for O_3, 26.7% for NO_2, 15.7% for CO. Frequencies distribution of SO_2, TSP, O_3, NO_2 and CO concentration for sea breeze moved toward high concentration class.
The land and sea breeze over the Pusan coastal area is studied by three dimensional mesoscale numerical model. According to the results of the simulation experiments, both Pusan areas and Kimhae areas, the sea breeze began at 0800LST and the strongest at 1500LST and then at 1800LST. After midnight, the sea breeze changed about the land breeze and become weaker than that of the sea breeze in the daytime. Comparisons between calculations and observations showed that the characteristics of diurnal variation and v-component of the wind velocity relatively is similar to the Pusan areas. On the Kimhae areas, however, observations showed time lag which compared to the results of simulation experiments in the velocity of sea breeze and diurnal variation. From the above results, comparisons between calculations and observations is much more similar to the coastal areas than on the inland area.
Land-sea breeze over Pusan district is investigated by performing the numerical simulations with orography on a two-dimensional mesoscale model. The model results show that the sea breeze strengthens and begins to move inland at 1000LST. The strongest sea breeze is occurred at 1500LST and begins to weak at 1700 LST. After 2400LST a weaker land breeze compared with the sea breeze develops. The observed datas and the simulated land-sea breeze is not coinsidented exactly at the event day(1983. 9. 19.). But simulated land-sea breeze is corresponded of synoptic characteristics that was studied previously.