검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 245

        21.
        2023.05 구독 인증기관·개인회원 무료
        The mobility of radionuclides is largely determined by their radiological properties, geochemical conditions, and adsorption reactions, such as surface adsorption, chemical precipitation, and ion exchange. To evaluate the safety assessments of radionuclides in nuclear sites, it is essential to understand the behavior and mechanism of radionuclides onto soils. Since nuclear power plants are located in coastal areas, the chemical composition of groundwater can vary depending on the intrusion of seawater, altering the adsorption distribution coefficient (Kd) values of radionuclides. This study examines the impact of seawater on the Kd values of clay minerals for cesium (Cs) and strontium (Sr). The results of Cs+ adsorption experiments showed a broad range of Kd values from 36 to 1,820 mL/g at an initial concentration of 1 mg/L and a high sorption coefficient of 15-613 mL/g at an initial concentration of 10 mg/L. Montmorillonite, hydrobiotite, illite, and kaolinite were ranked in terms of their CEC values for Cs+ adsorption, with hydrobiotite having the highest adsorption at 1 mg/L. The results of Sr adsorption experiments showed a wide range of Kd values from 82 to 1,209 mL/g at an initial concentration of 1 mg/L and a lower adsorption coefficient of 6.68-344 mL/g at an initial concentration of 10 mg/L. Both Cs+ and Sr2+ demonstrated lower Kd values at higher initial concentrations. CEC of clays found to have a significant impact on Sr2+ Kd values. Ca2+ ions showed a significant impact on Sr2+ adsorption distribution coefficients, demonstrating the greater impact of seawater on Sr2+ compared to Cs+. These findings can inform future safety assessments of radionuclides in nuclear sites.
        22.
        2023.05 구독 인증기관·개인회원 무료
        Given the limited terrestrial reserves of uranium (about 4.6 million tons), exploring alternative resources is essential to ensure the long-term supply and sustainability of nuclear energy. Uranium extraction from seawater (UES) is a potential solution to this issue since the amount of uranium dissolved in seawater (about 4.5 billion tons) is approximately 1000 times that of terrestrial reserves. However, the ultra-low concentration of uranium in seawater (about 3.3 ppb) makes it a challenging task to make UES economically feasible. This paper provides an overview of the current status of UES technology, which has evolved over the past seven decades. Starting from inorganic adsorbents such as hydrous titanium oxide in the 1960s, amidoxime-based fibrous adsorbents gained the most attention until the early 2010s due to their ease of deployment in actual seawater conditions and high affinity for uranium. Nowadays, research on organic adsorbents with microstructures is prevailing due to their ability to easily control surface area and compositions. In addition, this study identifies the key issues that need to be addressed to make UES technology economically viable.
        23.
        2023.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study deals with the maximum thermal load analysis and optimal capacity determination method of tank culture system for applying seawater source heat pump to save energy and realize zero energy. The location of the fish farm was divided into four sea areas, and the heat load in summer and winter was analyzed, respectively. In addition, two representative methods, the flow-through aquaculture system and the recirculation aquaculture system were reviewed as water treatment methods for fish farms. In addition, the concept of the exchange rate was introduced to obtain the maximum heat load of the fish farms. Finally, power consumption for heat pumps was analyzed in the view point of sea areas, tank capacity, and exchange rate based on the calculated maximum thermal load.
        4,000원
        25.
        2023.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        해수이차전지는 해수를 양극으로 사용하는 차세대 이차전지이다, 해양 자원을 사용하여 가격 경쟁력과 높은 친환경성, 그리고 해양 애플리케이션에 적합한 구조를 가진다. 이러한 장점을 기반으로 지속적 연구개발을 통해 자연 해수 노출을 가정한 파우치 타입 및 각형 타입이 개발되어 왔다. 그러나 이차전지는 전기적 특성상 사용 환경에 따라 용량 및 내부 임피던스가 달라진다. 이러한 특성은 전지 의 수명 예측에 활용될 뿐만 아니라 활용하고자 하는 상황에 맞는 용량과 출력에 직접적인 영향을 미친다. 따라서 본 논문에서는 해수이 차전지의 사용 환경에 따른 용량 측정과 SoC-OCV 측정 방법을 통한 내부 저항을 분석하고자 한다.
        4,000원
        27.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The study investigated the potential effect of the Ecklonia cava extract by using Jeju lava seawater (ECE-JLS; hardness: 100, 300 mg/L), which is naturally filtered underground by a volcanic rock layer. The chemical composition, antioxidant-related enzyme activities, radical scavenging activities, reactive oxygen species (ROS) production in Vero cells, and nitric oxide (NO) production in Raw 264.7 cells were measured to evaluate the antioxidant and anti-inflammatory activities of the extract. The total polyphenol and flavonoid contents of ECE-JLS100 and 300 were 156.41± 1.15, 166.16±2.27 mg/g, and 343.76±2.40, 373.90±3.67 mg/g, respectively. The concentration of ECE-JLS’ SOD and CAT-like activities was increased. ECE-JLS in the range of 0.25 to 2 mg/mL exhibited remarkable DPPH radical and hydrogen peroxide scavenging activities. ECE-JLS100 and 300 inhibited total ROS generation by 21.4±0.4 and 23.9± 0.3% in H2O2-induced Vero cells at 200 g/mL concentration, respectively. ECE-JLS100 and 300 decreased NO production, with levels of about 55.0±2.4 and 56.5±1.8% at 200 g/mL concentration, respectively. The contents of TNF-  were decreased compared to the negative control. These observations provide helpful information for the potential industrial use of Jeju lava seawater. Also, ECE-JLSW could be used as a functional food material.
        4,000원
        32.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        시간영역반사계(TDR)는 케이블의 물리적 결함을 검사하는 기법이며 누수 탐지 분야로의 응용영역을 확대하고 있다. 본 연구는 시간영역반사계 기법을 활용하여 선박 기관실 해수 배관의 누설 감지용 케이블형 센서를 개발하였다. 케이블 센서의 형상은 꼬임형상과 흡습부재를 이용하여 제작하였으며 개발된 센서의 누수 감지 여부와 위치 탐지 가능성을 확인하였다. 개발된 센서는 실제 배관 시험 장치 에 부착하여 평가하였으며 해수 누설에 따른 다양한 TDR 신호를 취득하였다. 센서는 꼬임횟수, 피복 두께를 변수로 하여 제작하였으며 TDR 신호에 미치는 효과를 분석하였다. 실험 결과, 꼬임형 센서는 평행한 띠 형상의 센서에 비해 평활한 신호 취득이 가능하였으며 최적 꼬임 횟수는 단위길이 당 10회 이상인 것으로 나타났다. 절연 피복두께의 경우 적정 민감도 확보가 가능한 절연 피복부재의 두께는 도선 직경의 80%~120%로 확인되었다. 누수 위치 추정을 위해 회귀분석 실시 결과, 결정계수는 0.9998로 실제 누설 위치와 높은 상관관계를 나타 내었다. 결과적으로 제안된 TDR 기반의 누수 감지용 꼬임형 센서는 해수 배관 시스템의 누수 감시 센서로의 충분한 적용성을 확인하였다.
        4,000원
        33.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Climatologists have warned rapid climate change of the earth and it will cause a big disaster worldwide. the rapid climate change is mostly due to emission of greenhouse gases. To reduce greenhouse gases, many countries have prepared protocols, agreements, and treaties. IMO(International Maritime Organization) have established the protocol to decrease ship’s greenhouse gases emission and they consider the nuclear power source is an option to replace fossils fuels. Our study focused on elemental technologies related to a nuclear powered ship and, the passive residual heat removal system(PRHRS) is one of topics in our study. As the mandatory of the post Fukushima accident, PRHRS for a nuclear powered ship has been studied. We invented the new concepts of PRHRS which is optimized to a nuclear powered ship. The numerical analysis results indicated that the system is very reasonable. Based on the numerical analysis, an experiential loop was set and we preliminary tested the performance of the system under the reduced scale. The experimental results came with the numerical analysis results well.
        4,000원
        34.
        2022.10 구독 인증기관·개인회원 무료
        During and after the construction of LILW disposal facilities, the decrease of groundwater head potential has been monitored. In addition, an increase of the electrical conductivity (EC) has been observed in several monitoring wells installed along the coastal coastline. Monitoring activity for groundwater head potential and hydrogeochemical properties is important to reduce the uncertainty in the evaluation of groundwater flow characteristics. However, the data observed in the monitoring wells are spatial point data, so there is a limit to the dimension. Several researchers evaluated groundwater head potential changes and seawater intrusion (SWI) potential for disposal sites using groundwater flow modeling. In case of groundwater flow modeling results for SWI, there is a spatial limit in directly comparing the EC observed in the monitoring wells with the modeling results. In a recent study, it was confirmed that the response of the long-range ground penetraiing radar (GPR) system was severely attenuated in the presence of saline groundwater. In order to reduce the spatial constraint of the groundwater monitoring wells for SWI, the characteristics of SWI within the disposal facility site by using the the results of a recent study of the long-range GPR system were investigated and evaluated in this study.
        37.
        2022.05 구독 인증기관·개인회원 무료
        Recently, an international issue due to the discharge of contaminated water from the Fukushima has been highlighted. Since the Fukushima nuclear power plant accident in japan, marine environmental radioactivity survey has been strengthened with increased sampling frequency and range for seawater in territorial waters. And a stationary underwater radiation monitoring system including floating equipment-based system such as oceanographic buoys, tidal stations have been deployed on-site to detect abnormal radiological events. However, stationary monitoring systems may be insufficient for the early detection of abnormal radioactivity over a wide area, since it is a passive way of waiting for radioactive materials to spread in the ocean. So, our team developed a ship-mounted seawater gammaray monitoring system that can be operated remotely and in real time. In this study, it includes a detailed description of the design, installation, monitoring method, and operation of the system.
        40.
        2022.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        One-step hydrothermal reduction method was used to prepare three-dimensional carbon fiber brush-based graphene–platinum (CFB/Pt–G) composites to improve the electrocatalytic oxygen reduction activity of cathode materials for seawater oxygen-dissolved battery. Characterization results show that the reduced graphene oxide of as-prepared graphene–platinum composite displays the few-layer folded structure. In addition, Pt nanoparticles with the polycrystalline structure dispplay a preferential growth along the crystal plane of (111) and are mainly distributed around the defect cavities of folded graphene. Electrochemical results show that the diffusion-limited current density of CFB/Pt–G composite tested with 1600 rpm/min in 3.5% NaCl solution reaches 5 mA/cm2, while that of CFB/G is only 2.64 mA/cm2. Battery discharge results show that the maximum volume power density of CFB/Pt–G–Mg battery with a stable open voltage of 1.73 V is 81 times as much as the commercial seawater battery SWB1200.
        4,000원
        1 2 3 4 5