The purpose of this study is to analyze the correlation between ecotoxicity and water quality items using Daphnia magna in public sewage treatment plant process and to obtain operational data to control ecotoxicity through research on removal efficiency. The average value of ecotoxicity was 1.39 TU in the influent, 1.50 TU in the grit chamber, and 0.84 TU in the primary settling tank and it was found that most organic matters, nitrogen, and phosphorus were removed through biological treatment in the bioreactor. Using Pearson’s correlation analysis, the positive correlation was confirmed in the order of ecotoxicity and water quality items TOC, BOD, T-N, NH3-N, SS, EC, and Cu. As a result of conducting a multilinear regression analysis with items representing positive correlation as independent variables, the regression model was found to be statistically significant, and the explanatory power of the regression model was about 81.6%. TOC was found to have a significant effect on ecotoxicity with B=0.009 (p<.001) and Cu with B=16.670 (p<.001), and since the B sign is positive (+), an increase of 1 in TOC increases the value of ecotoxicity by 0.009 and an increase in Cu by 1 increases the value of ecotoxicity by 16.670. TOC (β=0.789, p<.001) and Cu (β=0.209, p<.001) were found to have a significant positive effect on ecotoxicity. TOC and Cu have a great effect on ecotoxicity in the sewage treatment plant process, and it is judged that TOC and Cu should be considered preferentially and controlled in order to efficiently control ecotoxicity.
In order to determine the location of average concentration and distribution status of dissolved oxygen in the rectangular aeration tank of the sewage treatment plant was analyzed and the difference of dissolved oxygen concentration was remarkable at each location. Compared with the computational fluid dynamics analysis, it was found that the results were consistent with the measurement results by showing the difference of dissolved oxygen concentration between the locations. Based on the measured data, the representative location of dissolved oxygen in aeration tank was selected by using statistical analysis method and the representative location was expressed in three-dimensional coordinates(LWH : 25%, 50%, 33%) from flow direction and left wall. Also the difference between the dissolved oxygen concentration at the actual measurement location and the average concentration value of the entire aeration tank was founded, and the equations for calibrating the automatic measurement data considering the actual measurement location were calculated.
In this study, the fate and removal of 15 pharmaceuticals (including stimulants, non-steroidal anti-inflammatory drugs, antibiotics, etc.) in unit processes of a sewage treatment plant (STP) were investigated. Mass loads of pharmaceuticals were 2,598 g/d in the influent, 2,745 g/d in the primary effluent, 143 g/d in the secondary effluent, and 134 g/d in the effluent. The mass loads were reduced by 95% in the biological treatment process, but total phosphorous treatment did not show a significant effect on the removal of most pharmaceuticals. Also, mass balance analysis was performed to evaluate removal characteristics of pharmaceuticals in the biological treatment process. Acetaminophen, caffeine, acetylsalicylic acid, cefradine, and naproxen were efficiently removed in the biological treatment process mainly due to biodegradation. Removal efficiencies of gemfibrozil, ofloxacin, and ciprofloxacin were not high, but their removal was related to sorption onto sludge. This study provides useful information on understanding removal characteristics of pharmaceuticals in unit processes in the STP.
본 사례는 최근 준공된 “구미하수처리장 하수처리수를 이용한 재이용시설”에 대한 것으로 이 시설은 구미하수처리장의 2차 처리수를 원수로, 응집침전시설, 전처리시설, 주처리시설과 재이용수 공급시설로 구성되어 있으며, 설비의 성능 확인을 위한 시운전을 완료하였다. 주처리시설로는 역삼투막(RO Membrane)을 적용하였으며, 하수처리수 내 잔류물질로 인한 역삼투막 성능저하방지와 수요처의 요구수질 충족을 위해 활성탄 주입을 포함한 응집침전공정과 정밀여과막(Micro Filter)을 전처리시설로 구성하였다. 사업 초기단계에 현재 시공된 것과 동일한 공정으로 구성된 Pilot Plant를 건설, 운영하여, 반영된 각 단계별 공정의 적정성과 주요 설계 인자를 확인하였으며, 일부 확인된 개선 사항은 실시설계시 반영하였다.
Pollutants removal and disinfection effect of secondary effluent from final settling tank of sewage treatment plant of W city were investigated in Loop Reactor using ordinary granular activated carbon(GAC) and GAC coated with silver nanoparticles. The results showed that the removal efficiency of CODMn, T-N and T-P using GAC with silver nanoparticles were higher than using the ordinary GAC. The removal efficiency of T-P using GAC with silver nanoparticles is 45.4% and that of T-P using ordinary GAC is 30.9% in the same case of the input amount of 20 g/L of GAC. The total califorms is reduced according to increasing input amount of GAC with silver nanoparticles and ordinary GAC. The disinfection efficiency of total coliforms in case of GAC with silver nanoparticles is much higher than that in case of ordinary GAC. For all experiments using the silver nanoparticles, the total coliforms is under 26 cfu/mL and this shows very excellent disinfection effect.
This study has implemented an experiment in which hydrogen sulfide was removed by establishing a two-stage packed tower effector filled with nutritious medium and also filling a tower that was immobilized in ceramic media after isolating and identifying the sulfur oxidizing bacteria from a sewage treatment plant. As a result, strains isolated from the sewage treatment plant were found to be similar, including Bacillus fusiformis, Bacillus anthracis sp., Paenibacillus sp., Serratia marcescens sp., Bacillus thuringiensis. The effector that immobilized isolated strains in the ceramic media achieved an approximately 90% removal rate of hydrogen sulfide, while the sterilized ceramic media not immobilized with isolated strains showed a removal rate of about 65%. In addition, the removal rate of hydrogen sulfide in the primary media packing effector immobilized with sulfur oxidizing bacteria was about 92%, while the secondary effector filled with medium had a hydrogen sulfide removal rate near 100%. In addition, 90% efficiency of removal was shown in conditions of EBCT 60s in the experiment that investigated removal rate of hydrogen sulfide according to residence-time, while the efficiency was rapidly reduced up to 45% in conditions of EBCT 30s. On the other hand, when operating for an extended period time while increasing the concentration of injected hydrogen sulfide, the amount of sulfate was increased from 2 mg/L to 12.7 mg/L, and pH was rapidly reduced to 2.7.
This study has implemented an experiment in which hydrogen sulfide was removed by establishing a two-stage packed tower effector filled with nutritious medium and also filling a tower that was immobilized in ceramic media after isolating and identifying the sulfur oxidizing bacteria from a sewage treatment plant. As a result, strains isolated from the sewage treatment plant were found to be similar, including Bacillus fusiformis, Bacillus anthracis sp., Paenibacillus sp., Serratia marcescens sp., Bacillus thuringiensis. The effector that immobilized isolated strains in the ceramic media achieved an approximately 90% removal rate of hydrogen sulfide, while the sterilized ceramic media not immobilized with isolated strains showed a removal rate of about 65%. In addition, the removal rate of hydrogen sulfide in the primary media packing effector immobilized with sulfur oxidizing bacteria was about 92%, while the secondary effector filled with medium had a hydrogen sulfide removal rate near 100%. In addition, 90% efficiency of removal was shown in conditions of EBCT 60s in the experiment that investigated removal rate of hydrogen sulfide according to residence-time, while the efficiency was rapidly reduced up to 45% in conditions of EBCT 30s. On the other hand, when operating for an extended period time while increasing the concentration of injected hydrogen sulfide, the amount of sulfate was increased from 2 mg/L to 12.7 mg/L, and pH was rapidly reduced to 2.7.
Evaluation and comparison for the performance on the contracting-out became possible after the introduction of the performance indicators(PIs) in 2012 in Korea, And local governments and private companies are utilizing them as evaluation data to enhance the performance of the contracting-out. Several revisions on performance indicator were carried out by expert group on contents validity of PIs, But the review of the composition validity of PIs was not sufficient. In this study, the applicability, distinction ability and composition validity of PIs is evaluated by statistical method. From the results, Improvement of indicator is required in order to increase the interrelationship among indicators to enhance the compostion validity of indicators related with operation, sludge and water reuse
This research is carried out to investigate the odor emission characteristics in a sewage treatment plant. The plantwas divided into four areas (boundary areas, sewage treatment processes, sludge treatment processes and odortreatment plants), and measured around 27 sampling points. Odor characteristics from each areas were evaluatedby air dilution olfactory method and NH₃/SO₂/VOCs passive sampler, mainly in terms of spatial distribution. Themain odor emission sources were found out to be dewatering plant (S-4) of sludge, sludge transshipment place(S-5), and the outlet of odor treatment plant (B-2, B-3). The correlation between dilution number (OU) and ammoniaconcentration of passive sampler appeared to be low; correlation coefficient 0.49, but correlation coefficient for theresults of sulfur dioxide and toluene were very high, 0.95 and 0.93, respectively. These results indicate that odorcompounds form sewage treatment facility are mainly due to sulfur compounds and volatile organic compounds.
This study is an analysis about BOD ,COD, SS, T-N, T-P of 4Stage-BNR, MLE + CS(Coagulating Sedimentation) , Bio-SAC BNR method of construction for 3 largest sewage treatment plants among 12 sewage treatment plants in lncheon. The purpose of this study is improving the operational effectiveness for lncheon sewage treatment plant by introducing the optimized method for quality of the discharged water.
This study presented the plan for treatment plant as investigating the technical examination of existing landfill leachate treatment plant at Geumgo-Dong and the plan of landfill leachate treatment with sewage treatment. The R/O process in 1st stage landfill leachate treatment plant(plant capacity:150m3/d) was closed in consideration of economical aspect and efficiency. It is to be desired that the 1st stage and 2nd stage landfill leachate treatment (plant capacity: 250m3/d) are combined, and are converted the Pretreatment process with nitrogen treatment process, and after total landfill treatment leachate happened from landfill site is pretreated it is transferred the sewage treatment plant. Ammonia nitrogen load of landfill leachate that was transferredthe sewage treatment plant(plant capacity: 300,000m3/d). This load is no problem at now, but it is need change the inflow line for sewage treatment plant and the enlargement of pretreatment process in case that the raw landfill leachate is increased.
In order to study the change of pollution loads flowing into Mokpo harbour after the operation of Mokpo Municipal Sewage Treatment Plant (MMSTP) and to evaluate the contribution of MMSTP operation to the improvement of marine water quality of Mokpo harbour, the pollution loads flowing into Mokpo harbour from land in dry weather were surveyed and estimated on the bases of the seasonal flow rates and the seasonal water qualities of streams and effluents located around Mokpo harbour from summer, 1997 to spring, 1998 before the operation of MMSTP, and the pollution loads of the inflow and the effluent of MMSTP were also surveyed and estimated from winter, 1998 to spring, 1999 after the operation of MMSTP. The treatment rates of MMSTP were shown to be about 49% in COD, 76% in TSS, 79% in VSS, 3% in T-N, 7% in DIP, 29% in T-P and -32% in DIN. The change rates of pollution loads flowing into the inner harbour of Mokpo due to the operation of MMSTP were shown to be about 56% In COD, 78% in TSS, 84% in VSS, 45% in DIN, 22% in T-N, 34% in T-P and -14% in DIP. The contribution rates of MMSTP operation to the reduction of total pollution loads flowing into the entire Mokpo harbour were found to be about 3% in COD, 3% in 755,5% in VSS,1% in DIP, 3% in T-P and -1% in DIN.
The role of the distribution basin role is to apportion incoming raw water to the primary sedimentation basin as part of the water treatment process. The purpose of this study was to calculate the amount of water in the distribution basin using computational fluid dynamics (CFD) analysis and to find a way to improve any non-uniformity. We used the Taguchi method and the minitab tool as optimization methods. The results of the CFD calculation showed that the distribution flow had a deviation of 5% at the minimum inflow, 10% at the average inflow, and 22% at the maximum inflow. At maximum flow, the appropriate heights of the 7 weirs(C, D, A, B, E, F, G) were 40 mm, 20 mm, 20 mm, 0, 0, 0, and 20 mm, respectively, according to the Taguchi optimization tool. Here, the maximum deviation of the distribution amount was 9% and the standard deviation was 23.7. The appropriate heights of the 7 weirs, according to the Minitab tool, were 40 mm, 20 mm, 20 mm, 0, 0, 0, and 20 mm, respectively, for weirs C, D, A, B, E, F, and G. Therefore, the maximum deviation of the distribution amount was 8% and the standard deviation was 17.1, which was slightly improved compared to the Taguchi method.
Recently, an innovative method for wastewater treatment and nutrient removal was developed by combining the sequence batch reactor and membrane bioreactor to overcome pollution caused by shipboard sewage. This system is a modified form of the activated sludge process and involves repeated cycles of mixing and aeration. In the present study, the bacterial diversity and dominant microbial community in this wastewater treatment system were studied using the MACROGEN next generation sequencing technique. A high diversity of bacteria was observed in anaerobic and aerobic bioreactors, with approximately 486 species. Microbial diversity and the presence of beneficial species are crucial for an effective biological shipboard wastewater treatment system. The Arcobacter genus was dominant in the anaerobic tank, which mainly contained Arcobacter lanthieri (8.24%), followed by Acinetobacter jahnsonii (5.81%). However, the dominant bacterial species in the aerobic bioreactor were Terrimonas lutea (7.24%) and Rubrivivax gelatinosus (4.95%).
In this study, the International Maritime Organization (IMO)’s guideline MEPC. 277 (64) was developed and evaluated for the removal efficiency of T-N in a SBR and MBR combined process. This combined process of resized equipment based on large capacity water treatment device for a protection of marine aquatic life. In this experiment, T-N concentration of influent and effluent was measured through with the artificial wastewater. The SBR reactor operation time was varied according to the C : N : P ratios so that different conditions for mixing and aeration period in mins (90 : 60, 80 : 40, 70 : 50) and two C: N: P ratios (10 : 5 : 3, 10 : 3 : 1) were used. During experiment in the reactor’s aeration and anoxic tank DO concentrations were 3 mg/L and 0.2 mg/L respectively. Furthermore, in the reactor MLSS concentration was 2000 mg/L and flowrate was 2 L/hr. Experiment results showed that C : N : P, 10 : 3 : 1 ratio with 90 mins mixing and 60 mins aeration maximized removal efficiency at 97.3% T-N as compared to other conditions. The application of the SBR and MBR combined process showed efficient results.
Numerical analysis using commercial CFD code was carried out to develop the drag force type vertical axis hydraulic turbine for the improvement of the production efficiency of small hydro energy at low flow velocity condition. Blade pressure changes and internal flows were analyzed according to the presence or absence of the hydraulic turbine blade holes at flow velocity of less than 1.0~3.0 m/s. According to the numerical results, the pressure and flow velocity is severly affected by the flow velocity in turbine blade with no holes, while the influence of flow velocity is comparatively decreased in turbine blade with holes. It is also found that the pressure and flow velocity on the blade surface with holes are evenly distributed with no singular location and it is believed that forming a hole in the blade may be helpful in terms of structural safety.
인과 질소는 하천, 호소 등의 부영양화의 주요 인자로 작용하고 있고 특히 하수 중의 인 농도가 1 mg/L 이상일 경우 조류의 급증식이 일어날 수 있다. 현재 우리나라 하수처리 공정은 인을 기준치 이하로 제거하기 위해 총인 처리 공정을 운영하고 있으나, 이 과정에서 제거된 인은 슬러지와 혼합되어 폐기처분되고 있다. 인은 무한자원이 아닌 유한자원으로 비료, 금속표면처리 세정제를 비롯하여 다양한 용도로 사용될 수 있으며, 우리나라의 경우 전량 수입에 의존하고 있다. 최근 인광석 매장량의 한계로 인하여 인을 회수하여 재이용하는 기술이 반드시 필요한 실정이고, 그 대안으로 축산폐수, 혐기성발효액, 하수처리 시 발생되는 인을 유용한 자원으로 회수하는 방법에 관한 연구가 활발히 이루어지고 있다. 그러나 기존의 연구된 인결정은 100㎛ 이하의 미세 결정으로 고액분리 및 탈수에 어려움이 있다. 본 연구에서는 인제거 기술 중 화학적 침전법 중 하나인 MAP(Magnesium Ammonium Phosphate) 법을 적용하여 부천시와 공동으로 부천시 소재 공공하수처리장에서 발생되는 탈수여액내의 인을 회수하고자 하였으며 다양한 실험조건(pH, 약품, 주입량, Seed적용)에 따라 인회수 및 입상화의 최적 조건을 도출하고 연속반응조를 통하여 2mm 이상의 크기로 입상화가 가능함을 확인하였다. Jar-test 실험결과 pH 9, 몰비 1~9(Mg2+/PO4-P) 범위에서 PO4-P가 55%~90% 제거되었으며, 생성된 결정화물을 seed로 사용하여 최적 약품투입량 도출결과 pH9, 몰비1 조건에서 6회 재사용시 seed 미적용 대비 PO4-P 제거율이 36% 상승하였다. 도출된 조건을 이용하여 2단 상향류(내경이 1.1cm, 1.8cm) 반응조와 침전조로 구성된 Lab Scale 반응조에서 선속도를 변화시켜 입상화를 유도하였다. 입상화시 PO4-P 제거율은 70%~84%, NH3-N 제거율은 20%~28%로 나타났으며, 내경 1.1cm의 반응조 하부에는 2mm~1.5mm, 내경 1.8cm의 반응조 상부에서는 0.6mm~1.2mm로 입상화되었다. 본 연구에서 미립 결정화물을 연속 순환을 통하여 선속도에 따른 입상화를 확인한 결과, 2mm 이상의 인 결정화물의 생성이 가능함을 입증하였다. 이를 통해 탈수 및 건조에 소요되는 에너지를 최소화하고 고순도 입상화로 비료 가치를 향상시켜 경제성 확보가 가능할 것으로 사료된다.