검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 436

        81.
        2015.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Microstructural analysis of a (α+β) Ti alloy was investigated to consider phase transformation in each step of thethermo-mechanical process using by SEM and TEM EDS. The TAF (Ti-6Al-4Fe) alloy was thermo-mechanically treated withsolid solution at 880oC, rolling at 880oC and annealing at 800oC. In the STQ state, the TAF microstructure was composedof a normal hcp α and metastable β phase. In a rolled state, it was composed of fine B2 precipitates in an α phase, whichhad high Fe segregation and a coherent relationship with the β matrix. Finally, in the annealing state, the fine B2 precipitateshad disappeared in the α phase and had gone to the boundary of the α and β phase. On the other hand, in a lower rollingtemperature of 704oC, the B2 precipitates were more coarse in both the α and the boundary of α and β phase. We concludedthat microstructural change affects the mechanical properties of formability including rolling defects and cracks.
        4,000원
        82.
        2015.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, ternary compound Max Phase Ti2AlC material was mixed by 3D ball milling as a function of ball milling time. More than 99.5 wt% pure Ti2AlC was synthesized by using spark plasma sintering method at 1000, 1100, 1200, and 1300oC for 60 min. The material characteristics of synthesized samples were examined with relative density, hardness, and electrical conductivity as a function of sintering temperature. The phase composition of bulk was identified by X-ray diffraction. On the basis of FE-SEM result, a terraced structures which consists of several laminated layers were observed. And Ti2AlC bulk material obtained a vickers hardness of 5.1 GPa at the sintering temperature of 1100oC.
        4,000원
        83.
        2015.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Ti alloys are extensively used in high-technology application because of their strength, oxidation resistance at high temperature. However, Ti alloys tend to be classified very difficult to cut material. In this paper, The powder synthesis, spark plasma sintering (SPS), bulk material properties such as electrical conductivity and thermal conductivity are systematically examined on Ti2AlN and Ti2AlC materials having most light-weight and oxidation resistance among the MAX phases. The bulk samples mainly consisted of Ti2AlN and Ti2AlC materials with density close to theoretical value were synthesized by a SPS method. Machining characteristics such as machining time, surface quality are analyzed with measurement of voltage and current waveform according to machining condition of micro-electrical discharge machining with micro-channel shape.
        4,000원
        84.
        2015.05 구독 인증기관·개인회원 무료
        산소 분리를 위한 세라믹 중공사막을 상전이 방적기술을 통해 제조하였다. Ba0.5Sr0.5Co0.8Fe0.2O3-δ 선구 물질을 고분자 용액에 분산시킨 후 이중관형 노즐을 통해 사출한 후 상전이, 건조한 후 분리막의 한쪽 끝을 밀봉하였다. La0.6Sr0.4Ti0.3Fe0.7O3-δ 코팅 층은 dip coating 방법으로 제조되었으며 최종적으로 고온에서 소결하여 La0.6Sr0.4Ti0.3Fe0.7O3-δ로 코팅된 one end-closed type Ba0.5Sr0.5Co0.8Fe0.2O3-δ 중공사막을 제조하였다. 산소투과실험은 대기 중 공기를 사용하였으며 진공펌프를 연결하여 투과된 산소 유량 및 순도를 측정하였다.
        85.
        2015.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Alumina dispersion strengthening copper(ADSC) alloy has great potential for use in many industrial applications such as contact supports, frictional break parts, electrode materials for lead wires, and spot welding with relatively high strength and good conductivity. In this study, we investigated the oxidation behavior of ADSC alloys. These alloys were fabricated in forms of plate and round type samples by surface oxidation reaction using Cu-0.8Al, Cu-0.4Al-0.4Ti, and Cu-0.6Al-0.4Ti(wt%) alloys. The alloys were oxidized at 980 oC for 1 h, 2 h, and 4 h in ambient atmosphere. The microstructure was observed with an optical microscope(OM) and a scanning electron microscope(SEM) equipped with energy-dispersive X-ray spectroscopy(EDS). Characterization of alumina was carried out using a 200 kV field-emission transmission electron microscope(TEM). As a result, various oxides including Ti were formed in the oxidation layer, in addition to γ-alumina. The thickness of the oxidation layer increased with Ti addition to the Cu-Al alloy and with the oxidation time. The corrected diffusion equation for the plate and round type samples showed different oxidation layer thickness under the same conditions. Diffusion length of the round type specimen had a value higher than that of its plate counterpart because the oxygen concentration per unit area of the round type specimen was higher than that of the plate type specimen at the same diffusiondepth.
        4,000원
        86.
        2015.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, flat-type photocatalytic reaction system is applied to reduce toxic hexavalent chromium (Cr(VI)) to trivalent chromium (Cr(III)) in aqueous solution under UV irradiation. To overcome the limitation of conventional photocatalysis, a novel approach toward photocatalytic system for reduction of hexavalent chromium including nanotubular TiO2 (NTT) on two kinds of titanium substrates (foil and mesh) were established. In addition, modified Ti substrates were prepared by bending treatment to increase reaction efficiency of Cr(VI) in the flat-type photocatalytic reactor. For the fabrication of NTT on Ti substrates, Ti foil and mesh was anodized with mixed electrolytes (NH4F-H2O-C2H6O2) and then annealed in ambient oxygen. The prepared NTT arrays were uniformly grown on two Ti substrates and surface property measurements were performed through SEM and XRD. Hydraulic retention time(HRT) and substrate type were significantly affected the Cr(VI) reduction. Hence, the photocatalytic Cr(VI) reduction was observed to be highest up to 95% at bended(modified) Ti mesh and lowest HRT. Especially, Ti mesh was more effective as NTT substrate in this research.
        4,000원
        87.
        2015.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        TiH2 nanopowder was made by high energy ball milling. The milled TiH2 and CNT powders were then simultaneously synthesized and consolidated using pulsed current activated sintering (PCAS) within one minute under an applied pressure of 80 MPa. The milling did not induce any reaction between the constituent powders. Meanwhile, PCAS of the TiH2-CNT mixture produced a Ti-TiC composite according to the reaction (0.92TiH2 + 0.08CNT→0.84Ti + 0.08TiC + 0.92H2, 0.84TiH2 + 0.16CNT→0.68Ti + 0.16TiC + 0.84H2). Highly dense nanocrystalline Ti-TiC composites with a relative density of up to 99.7% were obtained. The hardness and fracture toughness of the dense Ti-8 mole% TiC and Ti-16 mole% TiC produced by PCAS were also investigated. The hardness of the Ti-8 mole% TiC and Ti-16 mole% TiC composites was higher than that of Ti. The hardness value of the Ti-16 mole% TiC composite was higher than that of the Ti-8 mole% TiC composite without a decrease in fracture toughness.
        4,000원
        88.
        2015.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Zn(BH4)2 was prepared by milling ZnCl2 and NaBH4 in a planetary ball mill in an Ar atmosphere, and XRD analysis, SEM observation, FT-IR analysis, DTA, and TGA were performed for synthesized Z (BH4)2 samples. 90 wt% MgH2+ 1.67 wt% Zn(BH4)2(+NaCl)+5 wt% Ni+1.67 wt% Ti+1.67 wt% Fe (named 90MgH2+1.67Zn(BH4) (+NaCl)+5Ni+1.67Ti+1.67Fe) samples were also prepared by milling in a planetary ball mill in an H2 atmosphere. The gas absorption and release properties of the Zn(BH4)2(+NaCl) and 90MgH2+1.67Zn(BH4)2(+NaCl)+5Ni+1.67Ti+1.67Fe samples were investigated. An FT-IR analysis showed that Zn(BH4)2 formed in the Zn(BH4)2(+NaCl) samples prepared by milling ZnCl2 and NaBH4. At the first cycle at 320 oC, 90MgH2+1.67Zn(BH4)2(+NaCl)+5Ni+1.67Ti+1.67Fe absorbed 2.95 wt% H for 2.5 min and 4.93 wt% H for 60 min under 12 bar H2, and released 1.46 wt% H for 10 min and 4.57 wt% H for 60 min under 1.0 bar H2.
        4,000원
        89.
        2014.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Thermal shock resistance property has recently been considered to be one of the most important basic properties, in the same way that the transverse-rupture property is important for sintered hard materials such as ceramics, cemented carbides, and cermets. Attempts were made to evaluate the thermal shock resistance property of 10 vol% TaC added Ti(C,N)-Ni cermets using the infrared radiation heating method. The method uses a thin circular disk that is heated by infrared rays in the central area with a constant heat flux. The technique makes it possible to evaluate the thermal shock strength (Tss) and thermal shock fracture toughness (Tsf) directly from the electric powder charge and the time of fracture, despite the fact that Tss and Tsf consist of the thermal properties of the material tested. Tsf can be measured for a specimen with an edge notch, while Tss cannot be measured for specimens without such a notch. It was thought, however, that Tsf might depend on the radius of curvature of the edge notch. Using the Tsf data, Tss was calculated using a consideration of the stress concentration. The thermal shock resistance property of 10 vol% TaC added Ti(C,N)-Ni cermet increased with increases in the content of nitrogen and Ni. As a result, it was considered that Tss could be applied to an evaluation of the thermal shock resistance of cermets.
        4,000원
        90.
        2014.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, modified catalytic chemical vapor deposition (CCVD) method was applied to control the CNTs (carbon nanotubes) growth. Since titanium (Ti) substrate and iron (Fe) catalysts react one another and form a new phase (Fe2TiO5) above 700℃, the decrease of CNT yield above 800℃ where methane gas decomposes is inevitable under common CCVD method. Therefore, we synthesized CNTs on the Ti substrate by dividing the tube furnace into two sections (left and right) and heating them to different temperatures each. The reactant gas flew through from the end of the right tube furnace while the Ti substrate was placed in the center of the left tube furnace. When the CNT growth temperature was set 700/950℃ (left/right), CNTs with high yield were observed. Also, by examining the micro-structure of CNTs of 700/950℃, it was confirmed that CNTs show the bamboo-like structure.
        4,000원
        91.
        2014.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Titanium alloys are extensively used in high-temperature applications due to their excellent high strength andcorrosion resistance properties. However, titanium alloys are problematic because they tend to be extremely difficult-to-cut material. In this paper, the powder synthesis, spark plasma sintering (SPS), bulk material characteristics and machin-ability test of hybrid Ti2AlC ceramic bulk materials were systematically examined. The bulk samples mainly consistedof Ti2AlC materials with density close to theoretical value were synthesized by a SPS method. Random orientation andgood crystallization of the Ti2AlC was observed at 1100℃ for 10 min under SPS sintering conditions. Scanning electronmicroscopy results indicated a homogeneous distribution and nano-laminated structure of Ti2AlC MAX phase. The hard-ness and electrical conductivity of Ti2AlC were higher than that of Ti 6242 alloy at sintering temperature of 1000℃~1100℃. Consequently, the machinability of the hybrid Ti2AlC bulk materials is better than that of the Ti 6242 alloy formicro-EDM process of micro-hole shape workpiece.
        4,000원
        92.
        2014.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The effects of processing parameters on the flow behavior and microstructures were investigated in hotcompression of powder metallurgy (P/M) Ti-6Al-4V alloy. The alloy was fabricated by a blended elemental (B/E)approach and it exhibited lamellar α+β microstructure. The hot compression tests were performed in the range of tem-perature 800-1000℃ with 50℃ intervals, strain rate 10−4-10 s−1, and strain up to 0.5. At 800-950℃, continuous flowsoftening after a peak stress was observed with strain rates lower than 0.1 s−1. At strain rates higher than 1 s−1, rapiddrop in flow stress with strain hardening or broad oscillations was recorded. The processing map of P/M Ti-6Al-4V wasdesigned based on the compression test and revealed the peak efficiency at 850℃ and 0.001 s−1. As the processing tem-perature increased, the volume fraction of β phase was increased. In addition, below 950℃, the globularization of phaseat the slower strain rate and kinking microstructures were found. Based on these data, the preferred working conditionof the alloy may be in the range of 850-950℃ and strain rate of 0.001-0.01 s−1.
        4,000원
        93.
        2014.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Metal films (i.e., Ti, Al and SUH310S) were prepared in a magnetron sputtering apparatus, and their cross-sectional structures were investigated using scanning electron microscopy. The apparatus used consisted of a cylindrical metal target which was electrically grounded, and two anode rings attached to the top and to the bottom of the target. A wire was placed along the center-line of the cylindrical target to provide a substrate. When the electrical potential of the substrate was varied, the metal-film formation rate depended on both the discharge voltage and the electrical potential of the substrate. As we made the magnetic field stronger, the plasma which appeared near the target collected on the plasma wall surface and thereby decreased the bias current. The bias current on the conducting wire was different from that for cation collection. The bias current decreased because the collection of cations decreased when we increased the magnetic-coil current. When the substrate was electrically isolated, the films deposited showed a slightly coarse columnar structure with thin voids between adjacent columns. In contrast, in the case of the grounded substrate, the deposited film did not show any clear columns but instead, showed a densely-packed granular structure. No peeling region was observed between the film and substrate, indicating good adhesion.
        4,000원
        94.
        2014.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Ti and Ti alloys have been extensively used in the medical and dental fields because of their good corrosion resistance, high strength to density ratio and especially, their low elastic modulus compared to other metallic materials. Recent trends in biomaterials research have focused on development of metallic alloys with elastic modulus similar to natural bone, however, many candidate materials also contain toxic elements that would be biologically harmful. In this study, new Ti based alloys which do not contain the toxic metallic components were developed using a theoretical method (DV-Xα). In addition, alloys were developed with improved mechanical properties and corrosion resistance. Ternary Ti-Ag-Zr alloys consisting of biocompatible alloying elements were produced to investigate the alloying effect on microstructure, corrosion resistance, mechanical properties and biocompatibility. The effects of various contents of Zr on the mechanical properties and biocompatibility were compared. The alloys exhibited higher strength and corrosion resistance than pure Ti, had antibacterial properties, and were not observed to be cytotoxic. Of the designed alloys' mechanical properties and biocompatibility, the Ti-3Ag-0.5Zr alloy had the best results.
        4,000원
        95.
        2014.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Titanium and its alloys are useful for implant materials. In this study, porous Ti-Nb-Zr biomaterials were successfully synthesized by powder metallurgy using a NH4HCO3 as space holder and TiH2 as foaming agent. Consolidation of powder was accomplished by spark plasma sintering process(SPS) at 850˚C under 30 MPa condition. The effect of high energy milling time on pore size and distribution in Ti-Nb-Zr alloys with space holder(NH4HCO3) was investigated by optical microscope(OM), scanning electron microscope(SEM) & energy dispersive spectroscopy(EDS) and X-ray diffraction(XRD). Microstructure observation revealed that, a lot of pores were uniformly distributed in the Ti-Nb-Zr alloys as size of about 30-100μm using mixed powder and milled powders. In addition, the pore ratio was found to be about 5-20% by image analysis, using an image analyzer(Image Pro Plus). Furthermore, the physical properties of specimens were improved with increasing milling time as results of hardness, relative density, compressive strength and Young's modulus. Particularly Young's modulus of the sintered alloy using 4h milled powder reached 52 GPa which is similar to bone elastic modulus.
        4,000원
        96.
        2014.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Nanocrystalline materials have received much attention as advanced engineering materials with improved physical and mechanical properties, including high strength, high hardness, excellent ductility and toughness. In this study, nanopowders of Al2O3, MgO and TiO2 were prepared as starting materials by high energy ball milling for the simultaneous synthesis and sintering of the nanostructured compound Mg4Al2Ti9O25 by high-frequency induction heating process. The highly dense nanostructured Mg4Al2Ti9O25 compound was produced within one minute by the simultaneous application of 80MPa pressure and induced current. The sintering behavior, grain size and mechanical properties of the Mg4Al2Ti9O25 compound were evaluated.
        4,000원
        97.
        2014.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper describes the surface modification effect of a Ti substrate for improved dispersibility of the cat-alytic metal. Etching of a pure titanium substrate was conducted in 50% H₂SO₄, 50˚C for 1h-12h to observe the sur-face roughness as a function of the etching time. At 1h, the grain boundaries were obvious and the crystal grains weredistinguishable. The grain surface showed micro-porosities owing to the formation of micro-pits less than 1 µm in diam-eter. The depths of the grain boundary and micro-pits appear to increase with etching time. After synthesizing the cat-alytic metal and growing the carbon nano tube (CNT) on Ti substrate with varying surface roughness, the distributiontrends of the catalytic metal and grown CNT on Ti substrate are discussed from a micro-structural perspective.
        4,000원
        1 2 3 4 5