검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 148

        1.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The development of thermoelectric (TE) materials to replace Bi2Te3 alloys is emerging as a hot issue with the potential for wider practical applications. In particular, layered Zintl-phase materials, which can appropriately control carrier and phonon transport behaviors, are being considered as promising candidates. However, limited data have been reported on the thermoelectric properties of metal-Sb materials that can be transformed into layered materials through the insertion of cations. In this study, we synthesized FeSb and MnSb, which are used as base materials for advanced thermoelectric materials. They were confirmed as single-phase materials by analyzing X-ray diffraction patterns. Based on electrical conductivity, the Seebeck coefficient, and thermal conductivity of both materials characterized as a function of temperature, the zT values of MnSb and FeSb were calculated to be 0.00119 and 0.00026, respectively. These properties provide a fundamental data for developing layered Zintl-phase materials with alkali/alkaline earth metal insertions.
        4,000원
        3.
        2024.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The bentonite buffer material is a crucial component in an engineered barrier system used for the disposal of high-level radioactive waste. Because a large amount of heat from the disposal canister is released into the bentonite buffer material, the thermal conductivity of the bentonite buffer is a crucial parameter that determines the design temperature. At the Korea Atomic Energy Research Institute (KAERI), a new standard bentonite (Bentonil-WRK) has been used since 2022 because Gyeongju (KJ) bentonite is no longer produced. However, the currently available data are insufficient, making it essential to investigate both the basic and complex properties of Bentonil-WRK. Thus, this study evaluated its geotechnical and thermal properties and developed a thermal conductivity empirical model that considers its dry density, water content, and temperature variations from room temperature to 90°C. The coefficient of determination (R2) for the model was found to be 0.986. The thermal conductivity values of Bentonil-WRK were 1–10% lower than those of KJ bentonite and 10–40% higher than those of MX-80 bentonites, which were attributable to mineral-composition differences. The thermal conductivity of Bentonil-WRK ranged between 0.504 and 1.149 W·(m−1·K−1), while the specific heat capacity varied from 0.826 to 1.138 (kJ·(kg−1·K−1)).
        4,000원
        5.
        2023.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        High-strength low-alloy steel is one of the widely used materials in onshore and offshore plant engineering. We investigated the alloying effect of solute atoms in α-Fe based alloy using ab initio calculations. Empirical equations were used to establish the effect of alloying on the Vicker’s hardness, screw energy coefficient, and edge dislocation energy coefficient of the steel. Screw and edge energy coefficients were improved by the addition of V and Cr solute atoms. In addition, the addition of trace quantities of V, Cr, and Mn enhanced abrasion resistance. Solute atoms and contents with excellent mechanical properties were selected and their thermal conductivity and thermal expansion behavior were investigated. The addition of Cr atom is expected to form alloys with low thermal conductivity and thermal expansion coefficient. This study provides a better understanding of the state-of-the-art research in low-alloy steel and can be used to guide researchers to explore and develop α-Fe based alloys with improved properties, that can be fabricated in smart and cost-effective manners.
        4,000원
        6.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study focused on improving the phase stability and mechanical properties of yttria-stabilized zirconia (YSZ), commonly utilized in gas turbine engine thermal barrier coatings, by incorporating Gd2O3, Er2O3, and TiO2. The addition of 3-valent rare earth elements to YSZ can reduce thermal conductivity and enhance phase stability while adding the 4-valent element TiO2 can improve phase stability and mechanical properties. Sintered specimens were prepared with hot-press equipment. Phase analysis was conducted with X-ray diffraction (XRD), and mechanical properties were assessed with Vickers hardness equipment. The research results revealed that, except for Z10YGE10T, most compositions predominantly exhibited the t-phase. Increasing the content of 3-valent rare earth oxides resulted in a decrease in the monoclinic phase and an increase in the tetragonal phase. In addition, the t(400) angle decreased while the t(004) angle increased. The addition of 10 mol% of 3-valent rare-earth oxides discarded the t-phase and led to the complete development of the c-phase. Adding 10 mol% TiO2 increased hardness than YSZ.
        4,000원
        7.
        2023.05 구독 인증기관·개인회원 무료
        Molten salts have gained significant attention as a potential medium for heat transfer or energy storage and as liquid nuclear fuel, owing to their superior thermal properties. Various fluoride- and chloride-based salts are being explored as potential liquid fuels for several types of molten salt reactors (MSRs). Among these, chloride-based salts have recently received attention in MSR development due to their high solubility in actinides, which has the potential to increase fuel burnup and reduce nuclear water production. Accurate knowledge of the thermal physical properties of molten salts, such as density, viscosity, thermal conductivity, and heat capacity, is critical for the design, licensing, and operation of MSRs. Various experimental techniques have been used to determine the thermal properties of molten salts, and more recently, computational methods such as molecular dynamics simulations have also been utilized to predict these properties. However, information on the thermal physical properties of salts containing actinides is still limited and unreliable. In this study, we analyzed the available thermal physical property database of chloride salts to develop accurate models and simulations that can predict the behavior of molten salts under various operating conditions. Furthermore, we conducted experiments to improve our understanding of the behavior of molten salts. The results of this study are expected to contribute to the development of safer and more efficient MSRs.
        8.
        2023.05 구독 인증기관·개인회원 무료
        Many countries have used nuclear power to generate electricity. Uranium-235, which is used as fuel in nuclear power plants, produces many fission products. Among them, iodine-129 is problematic due to its long half-life (1.57×107 years) and high diffusivity in the environment. If it is released into the environment without any treatment, it could have a major impact on humans and ecosystems. Therefore, it must be treated into a stable form through capture and solidification. Iodine can be captured in the form of AgI through silver-loaded zeolite filters in off-gas treatment processes. However, AgI could be decomposed in the reducing atmosphere of groundwater, so it must be converted into a stable form. In this study, Al2O3, Bi2O3, PbO, V2O5, MoO3, or WO3 were added to the iodine solidification matrix, AgI-Ag2O-TeO2 glass. The glass precursors were mixed to the appropriate composition and placed in an alumina crucible. After heat treatment at 800°C for 1 hour, the melt was quenched in a carbon crucible. The leaching behavior and thermal properties of the glass samples were evaluated. The PCT-A test for leaching evaluation showed that the normalized releases of all elements were below 2 g/m2, which satisfied the U.S. glass wasteform leaching regulations. Diffrential scanning calorimetry (DSC) was performed to evaluate the thermal properties of all glass samples. The addition of MoO3 or WO3 to the AgI-Ag2O-TeO2 glass increased the glass transition temperature (Tg) and crystallization temperature (Tc) while maintaining the glass stability. The similar relative electro-static filed values of MoO3, and WO3 which are approxibately three times that of the glass network former TeO2, could provide sufficient force to the TeO2 interacting with the non-bridging oxygen forming Te-O-M (M=V, Mo, W) links. The high electrostatic forces of Mo and W increased the glass network cohension and prevented the crystallization of the glass.
        9.
        2023.05 구독 인증기관·개인회원 무료
        Heat-generating nuclides such as Cs-137 and Sr-90 should be separated from spent nuclear fuel to reduce the short-term thermal load on the repository facility. In particular, Sr-90 must be separated because its decay process generates high temperatures. Recently, the Korea Atomic Energy Research Institute (KEARI) has been developing a waste burden minimization technology to reduce the environmental burden resulting from the disposal of spent nuclear fuel and maximize the utilization of the disposal facility. The technology incorporates a nuclide management process that maximizes disposal efficiency by selectively separating and accumulating key nuclides from spent nuclear fuel, such as Cs, Sr, I, TRU/RE, and Tc/Se. Sr nuclides dissolve in the chloride phase during the chlorination process of spent nuclear fuel and are recovered as carbonate or oxide through reactive distillation or reactive crystallization. Due to their chemical similarity, Ba nuclides are recovered along with Sr nuclides during this process. In this study, we prepared a ceramic waste form for group II nuclides, Ba(x)Sr(1-x)TiO3 (x=0, 0.25, 0.5, 0.75, 1), using the solid-state reaction method, taking into account the different ratios of Sr/Ba nuclides produced during the nuclide management process. Regardless of the Sr/Ba ratio, the established waste form fabrication process was able to produce a stable waste form. Physicochemical properties, including leaching and thermal properties, were evaluated to determine the stability of group II waste forms. In addition, the radiological properties of waste forms of Ba(x)Sr(1-x)TiO3 with varying Sr/Ba ratios were evaluated. These results provided fundamental data for the long-term storage and management of waste forms containing group II nuclides.
        11.
        2023.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This article reported a simple method for preparing diamond/SiC composites by polymer impregnation and pyrolysis (PIP) process, and the advantages of this method were discussed. Only diamond and SiC were contained in the diamond/SiC composite prepared by PIP process, and the diamond particles remained thermally stable up until the pyrolysis temperature was increased to 1600 °C. The pyrolysis temperature has a significant impact on the thermal conductivity and dielectric properties of composites. The thermal conductivity of the composite reaches a maximum value of 63.9 W/mK when the pyrolysis temperature is 1600 °C, and the minimum values of the real and imaginary part of the complex permittivity are 19.5 and 0.77, respectively. The PIP process is a quick and easy method to prepare diamond/SiC composites without needing expensive equipment, and it is of importance for promoting its application in the field of electric packaging substrate.
        4,000원
        13.
        2022.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This research investigated the effect of Si addition on the microstructure, mechanical properties, electric and thermal conductivity of as-extruded Al 6013 alloys. As the content of Si increased, the area fraction of the second phase increased. As the Si content increased, the average grain size decreased remarkably, from 182 (no Si addition) to 142 (1.5Si), 78 (3.0Si) and 77 μm (4.5Si) due to dynamic recrystallization by the dispersed second particles in the aluminum matrix during the hot extrusion. As the Si content increased, the yield strength and ultimate tensile strength increased. The maximum values of yield strength and ultimate tensile strength were 224 MPa and 103 MPa for the 6013-4.5Si alloy. As the amount of Si added increased, the electrical and thermal conductivity decreased. The electrical and thermal conductivity of the Al6013-4.5Si alloy were 44.0% IACS and 165.0 W/mK, respectively. The addition of Si to Al 6013 alloy had a significant effect on its thermal conductivity and mechanical properties.
        4,000원
        14.
        2022.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        There is ongoing research to develop lithium ion batteries as sustainable energy sources. Because of safety problems, solid state batteries, where electrolytes are replaced with solids, are attracting attention. Sulfide electrolytes, with a high ion conductivity of 103 S/cm or more, have the highest potential performance, but the price of the main materials is high. This study investigated lithium hydride materials, which offer economic advantages and low density. To analyze the change in ion conductivity in polymer electrolyte composites, PVDF, a representative polymer substance was used at a certain mass ratio. XRD, SEM, and BET were performed for metallurgical analyses of the materials, and ion conductivity was calculated through the EIS method. In addition, thermal conductivity was measured to analyze thermal stability, which is a major parameter of lithium ion batteries. As a result, the ion conductivity of LiH was found to be 106 S/cm, and the ion conductivity further decreased as the PVDF ratio increased when the composite was formed.
        4,000원
        15.
        2022.10 구독 인증기관·개인회원 무료
        B4C/Al composite is mainly used for neutron absorbing materials, which is one of the components of equipment that manages spent nuclear fuel. There are various processes for manufacturing neutron absorbing materials, but most of them are based on the powder metallurgy. In this study, B4C/Al composite in which the reinforcement was uniformly dispersed was manufactured by using the stir casting process. The microstructure, thermal neutron absorption rate, mechanical properties and dispersibility of the reinforcement of the prepared B4C/Al composite were analyzed.
        16.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A Cu-15Ag-5P filler metal (BCuP-5) is fabricated on a Ag substrate using a high-velocity oxygen fuel (HVOF) thermal spray process, followed by post-heat treatment (300oC for 1 h and 400oC for 1 h) of the HVOF coating layers to control its microstructure and mechanical properties. Additionally, the microstructure and mechanical properties are evaluated according to the post-heat treatment conditions. The porosity of the heat-treated coating layers are significantly reduced to less than half those of the as-sprayed coating layer, and the pore shape changes to a spherical shape. The constituent phases of the coating layers are Cu, Ag, and Cu-Ag-Cu3P eutectic, which is identical to the initial powder feedstock. A more uniform microstructure is obtained as the heat-treatment temperature increases. The hardness of the coating layer is 154.6 Hv (as-sprayed), 161.2 Hv (300oC for 1 h), and 167.0 Hv (400oC for 1 h), which increases with increasing heat-treatment temperature, and is 2.35 times higher than that of the conventional cast alloy. As a result of the pull-out test, loss or separation of the coating layer rarely occurs in the heat-treated coating layer.
        4,000원
        17.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, a new manufacturing process for a multilayer-clad electrical contact material is suggested. A thin and dense BCuP-5 (Cu-15Ag-5P filler metal) coating layer is fabricated on a Ag plate using a high-velocity oxygen-fuel (HVOF) process. Subsequently, the microstructure and bonding properties of the HVOF BCuP-5 coating layer are evaluated. The thickness of the HVOF BCuP-5 coating layer is determined as 34.8 μm, and the surface fluctuation is measured as approximately 3.2 μm. The microstructure of the coating layer is composed of Cu, Ag, and Cu-Ag-Cu3P ternary eutectic phases, similar to the initial BCuP-5 powder feedstock. The average hardness of the coating layer is 154.6 HV, which is confirmed to be higher than that of the conventional BCuP-5 alloy. The pull-off strength of the Ag/BCup-5 layer is determined as 21.6 MPa. Thus, the possibility of manufacturing a multilayer-clad electrical contact material using the HVOF process is also discussed.
        4,000원
        18.
        2022.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Diamond reinforced silicon carbide matrix composites (diamond/SiC) with high thermal conductivity were prepared by tape casting combined with Si vapor infiltration for thermal management application. The effects of the mixing mode of bimodal diamond particles on the microstructure, thermal and mechanical properties of the composites were analyzed. The results reveal that the thermal conductivity of composites is affected significantly by mixing mode of diamond. In general, when the content of large diamond remains constant, adding a slight amount of small diamond was found to be effective in improving the thermal conductivity of the composite. However, excess small diamonds added will decrease thermal conductivity due to its high interfacial thermal resistance. The maximum thermal conductivity of obtained diamond/SiC is 469 W/(m K) when 38 vol% large diamond and 4 vol% small diamond were added. Such a result can be attributed to the formation of efficient heat transfer channels within the composite and sound interfacial bonding between diamond and SiC phase. Diamond/SiC with high thermal conductivity are expected to be the next generation of electronic packaging substrate.
        4,000원
        19.
        2022.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Two kinds of mesocarbon microbeads (MCMBs) with different chemical composition have been synthesized. The MCMBs were molded and heat treated at temperatures above 2000 °C to obtain graphite blocks. The effects of chemical composition of MCMBs on the pore morphology, carbon texture and thermal properties of the derived graphite blocks have been explored. The pore morphology was investigated by small angle X-ray scattering technique and a graphitization-induced morphology transition was observed. When the graphitic crystallite size exceeded a threshold value, the association of crystallites and migration of randomly distributed pores took place extensively. For the graphite blocks made of MCMBs which had light components with higher aromaticity value, the growth of crystallites caused a significant enhancement in thermal conductivity for the specimens. However, for the other kind of MCMBs, their light components tended to form solid porous carbon texture after graphitization, and the thermal conductivity coefficients of their graphite blocks could only increase slightly as crystallites grew. It was suggested that the thermal resistance at the granule’s boundary became noticeable in the latter case and thus the growth of thermal conductivity coefficients was prominently hindered.
        4,000원
        20.
        2022.05 구독 인증기관·개인회원 무료
        To decrease area of the repository for high-level radioactive waste, enhancing the disposal efficiency is needed for public acceptance. Previous studies regarding the performance assessment of KRS and KRS+ repository did not consider area-based variations of the geothermal gradient and rock thermal properties in Korea. This research estimated deposition hole spacing based on performance assessment of a repository using the distribution of geothermal gradient and rock thermal properties in Korea to increase disposal efficiency. Distributions of geothermal gradient, rock thermal properties were investigated based on 2019 Korea geothermal atlas published by Korea Institute of Geoscience and Mineral Resources (KIGAM). Effect of thermal performance parameters was analyzed using coupled thermal-hydraulic numerical simulations, and effect of rock thermal conductivity and deposition hole spacing on the maximum temperature of buffer was relatively large. In addition, distribution maps of thermal performance of a repository and deposition hole spacing were plotted using thermal performance parameters-maximum temperature of buffer regression equations and GIS data given by KIGAM. In the regions showing the highest maximum temperature of buffer in Korea, required deposition hole spacings were 10.5 m, 10.0 m, 10.1 m, respectively for KJ-II, MX-80, and FEBEX bentonite cases, and thereby additional disposal area of 40%, 33.3%, and 34.7% were required compared to that of the KRS+ repository. On the other hand, high disposal efficiency can be obtained in the regions showing the low maximum temperature of bentonite buffer. The methodology provided in this research can be used as one of the references for the selection of domestic candidate repository sites. Additional mechanical performance analysis should be conducted using distributions of mechanical properties of rock mass in Korea.
        1 2 3 4 5