The coupling of two semiconducting materials is an efficient method to improve photocatalytic activity via the suppression of recombination of electron-hole pairs. In particular, the coupling between two different phases of TiO2, i.e., anatase and rutile, is particularly attractive for photocatalytic activity improvement of rutile TiO2 because these coupled TiO2 powders can retain the benefits of TiO2, one of the best photocatalysts. In this study, anatase TiO2 nanoparticles are synthesized and coupled on the surface of rutile TiO2 powders using a microemulsion method and heat treatment. Triton X-100, as a surfactant, is used to suppress the aggregation of anatase TiO2 nanoparticles and disperse anatase TiO2 nanoparticles uniformly on the surface of rutile TiO2 powders. Rutile TiO2 powders coupled with anatase TiO2 nanoparticles are successfully prepared. Additionally, we compare the photocatalytic activity of these rutile-anatase coupled TiO2 powders under ultraviolet (UV) light and demonstrate that the reason for the improvement of photocatalytic activity is microstructural.
F-containing TiO2 nanopowders are synthesized using simple wet processes (precipitation-based and hydrothermal) from ammonium hexafluorotitanate (AHFT, (NH4)2TiF6) as a precursor to apply as a photocatalyst for the degradation of rhodamine B (RhB). The surface properties of the prepared samples are evaluated using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM). The results confirm that the synthesized anatase TiO2 has sphere-like shapes, with numerous small nanoparticles containing fluorine on the surface. The photocatalytic activity of F-containing TiO2 compared with F-free TiO2 is characterized by measuring the degradation of RhB using a xenon lamp. The photocatalytic degradation of F-containing TiO2 exhibits improved photocatalytic activity, based on the positive effects of adsorbed F ions on the surface.
One-dimensional rutile TiO2 is an important inorganic compound with applicability in sensors, solar cells, and Li-based batteries. However, conventional synthesis methods for TiO2 nanowires are complicated and entail risks of environmental contamination. In this work, we report the growth of TiO2 nanowires on a Ti alloy powder (Ti-6wt%Al- 4wt%V, Ti64) using simple thermal oxidation under a limited supply of O2. The optimum condition for TiO2 nanowire synthesis is studied for variables including temperature, time, and pressure. TiO2 nanowires of ~5 μm in length and 100 nm in thickness are richly synthesized under the optimum condition with single-crystalline rutile phases. The formation of TiO2 nanowires is greatly influenced by synthesis temperature and pressure. The synthesized TiO2 nanowires are characterized using field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and high-resolution transmission electron microscopy (HR-TEM).
선박 및 해양구조물에서의 생물학적 오손을 방지하기 위하여 나노크기의 MnOx-WO₃-TiO₂ 분말을 졸겔법으로 합성하여 특성을 제어하였고, 입자의 결정과 미세구조 등 분체특성 평가를 실시하였다. 자기마모형 방오도료의 안료에 적용하기 위하여 수지에 첨가 된 TiO₂계 나노분말 안료의 함량에 따른 표면특성 및 방오성능을 확인하였다. TiO₂계 안료의 분체특성으로 비표면적은 약 90 m²/g, 입자 크기는 약 100 ~ 150 nm을 보였다. 텅스텐 산화물은 망간산화물과 티타늄산화물과 상관관계를 통해, 삼원계 분체가 분체특성 및 표면특성이 우수하였다. 망간산화물의 첨가는 독특한 산화환원 특성으로 인하여 방오성능을 증가시키고, 텅스텐 산화물은 안료의 분체특성을 향상시킴으로, 안료와 수지의 비율을 조절하여 분산성, 표면특성 및 방오성능을 제어하였다. 그 결과로, 분산성 및 표면특성에 있어서 1, 5 wt. % 안료가 첨가된 것이 일부 우수하였으나, 5개월 동안의 해상침지시험에서는 2 wt. % 함유된 시편이 높은 방오성능을 보여 해양구조물의 방오안료 적용가능성을 확인하였다.
Nanocrystalline powder could be synthesized by solid-state reaction using the mixture which was prepared by a high energy milling process in a bead mill for and nanocrystalline powders mixture. Effect of the milling time on the powder characteristic of the synthesized powder was investigated. Nanocrystalline with a particle size of 50 nm was obtained at . High tetragonal powder with a tetragonality(=c/a) of 1.009 and a specific surface area of was acquired after heat-treatment at for 2 h. High energy ball milling was effective in decreasing the reaction temperature and increasing the tetragonality.
Nano-technology is a super microscopic technology to deal with structures of 100 nm or smaller. This technology also involves the developing of TiO2 materials or TiO2 devices within that size. The aim of the present paper is to synthesize WOx doped nano-TiO2 by the Sonochemistry method and to evaluate the effect of different percentages (0.5-5 wt%) of tungsten oxide load on TiO2 in methylene blue (MB) elimination. The samples were characterized using such different techniques as X-ray diffraction (XRD), TEM, SEM, and UV-VIS absorption spectra. The photo-catalytic activity of tungsten oxide doped TiO2 was evaluated through the elimination of methylene blue using UV-irradiation (315-400nm). The best result was found with 5 wt% WOx doped TiO2. It has been confirmed that WOx-TiO2 could be excited by visible light (E<3.2 eV) and that the recombination rate of electrons/holes in WOx-TiO2 declined due to the existence of WOx doped in TiO2.
In this study, we successfully synthesized a nano-sized lanthanum-modified lead-titanate (PLT) powder with a perovskite structure using a high-energy mechanochemical process (MCP). In addition, the sintering behavior of synthesized PLT nanopowder was investigated and the sintering temperature that can make the full dense PLT specimen decreased to below by using powder as sintering agent. The pure PLT phase of perovskite structure was formed after MCP was conducted for 4 h and the average size of the particles was approximately 20 nm. After sintered at 1050 and , the relative density of PLT was about 93.84 and 95.78%, respectively. The density of PLT increased with adding and the specimen with the relative densitiy over 96% were fabricated below when 2 wt% of was added.
The compaction response of nano powders with an addition of Ti powders prepared by magnetic pulsed compaction and subsequent sintering processes was investigated. All kinds of different bulk exhibited an average shrinkage of about 12% for different MPCed pressure and sintering temperature, which were approximately 50% lower than those fabricated by general process (20%) and a maximum density of around 92.7% was obtained for 0.8GPa MPCed pressure and sintering temperature. The addition of Ti powder induced an increase in the formability and hardness of the sintered . But the lower densities were obtained on sintering with addition of over 10 (wt%) Ti powder due to generation of crack during sintering. Subsequently it was verified that the optimum compaction pressure in MPC and sintering temperature were 0.8GPa and , respectively
In chemistry, the study of sonochemistry is concerned with understanding the effect of sonic waves and wave properties on chemical systems. In the area of chemical kinetics, it has been observed that ultrasound can greatly enhance chemical reactivity in a number of systems by as much as a million-fold. Nano-technology is a super microscopic technology in which structures of 100 nanometers or smaller can be investigated. This technology has been used to develop TiO2 materials and TiO2 devices of that size. Thus far, electrochemistry methods and photochemistry methods have generally been used to create TiO2 nano-size particles. However, these methods are complicated and create pollutants as a by-product. In the present study, nano-scale silver particles (5 nm) were prepared in a sonochemistry method. Sonochemistry deals with mechanical energy that is provided by the collapse of cavitation bubbles that form in solutions during exposure to ultrasound. TiO2 powders 25 nm in size doped with Ag were formed using an ultrasonic sound technique. The experimental results showed the high possibility of removing pollution through the action of a photocatalyst. This powder synthesis technique can be considered as an environmentally friendly powder-forming processing owing to its energy saving characteristics.
In this research, fine-structure TiO2 bulks were fabricated in a combined application of magnetic pulsed compaction (MPC) and subsequent sintering and their densification behavior was investigated. The obtained density of TiO2 bulk prepared via the combined processes increased as the MPC pressure increased from 0.3 to 0.7 GPa. Relatively higher density (88%) in the MPCed specimen at 0.7 GPa was attributed to the decrease of the inter-particle distance of the pre-compacted component. High pressure and rapid compaction using magnetic pulsed compaction reduced the shrinkage rate (about 10% in this case) of the sintered bulks compared to general processing (about 20%). The mixing conditions of PVA, water, and TiO2 nano powder for the compaction of TiO2 nano powder did not affect the density and shrinkage of the sintered bulks due to the high pressure of the MPC.
[ ] nanotubes for photocatalytic application have been synthesized by hydrothermal method. nanotubes are formed by washing process after reaction in alkalic solution. Nanotubes with different morphology have been fabricated by changing NaOH concentration, temperature and time. nanoparticles were treated inside NaOH aqueous solution in a Teflon vessel at for 20 h, after which they were washed with HCl aqueous solution and deionized water. Nanotube with the most perfect morphology was formed from 0.1 N HCl washing treatment. nanotube was also obtained when the precursor was washed with other washing solutions such as , NaCl, , and . Therefore, it was suggested that ion combined inside the precursor compound slowly comes out from the structure, leaving nanosheet morphology of compounds, which in turn become the nanotube in the presence of hydroxyl ion. To stabilize the sheet morphology, the different type of washing treatment solution might be considered such as amine class compounds.
In this study, the colloidal stability and sedimentation behavior of crystalline particles (300nm) in various organic solvents have been investigated by means of a backscattered light flux profile (Turbiscan). The backscattered light flux profiles revealed that the nanoparticles were readily sedimented in water, methyl alcohol, and ethyl alcohol due to a flocculation-induced particle growth, while a particle coalescence and a sedimentation of the nanoparticles were hardly observed in isopropyl alcohol. The migration velocities of the particle were measured as around 6.15/min, 12.53 m/min, 6.51m/min, and 0.18m/min for water, methyl alcohol, ethyl alcohol, and isopropyl alcohol, respectively, showing a remarkably slow migration of the particles in isopropyl alcohol
nanopowder has been synthesized by means of the flame method using a precursor of titanium tetraisopropoxide (TTIP, Ti. In order to clarify the effect of cooling rate of hot flame on the formation of crystalline phases, the flame was controlled by varying the mixing ratio and the flow rate of gases. Anatase phase was predominantly synthesized under the condition having the steep cooling gradient in flame, while a slow cooling gradient enabled to form almost rutile nanopowder of above 95%
nanopowder was synthesized by chemical vapor condensation (CVC) process and its photocatalytic property depending on microstructure was considered in terns of decomposition rate of organic compound. In order to control microstructure of nanopowder such as particle size and degree of agglomeration, precursor flow rate representing number concentration was changed as a process variable. In TEM observation, spherical nanoparticles with average size of 20 nm showed gradual increases in particle size and degree of agglomeration with increase of precursor flow rate. Also decomposition rate of organic compound increased with decreasing precursor flow rate. Thus, it was concluded that photocatalytic property was enhanced by targe surface area of disperse nanoparticles synthesized at lower precursor flow rate condition in CVC process
The purpose of this experimental study is to investigate the influence of chemical resistance of porous concrete using high performance nano TiO2 Carrier. As a result, porous concrete using high performance nano TiO2 Carrier was confirmed to be superior than ordinary concrete and TiO2 concrete chemical resistance.