Tuna fisheries were applied to an integrated ecosystem-based fishery risk assessment method using indexes of target species status, inhabited species in a target ecosystem, habitat quality and socio-economic benefit of affected fisheries. This study suggested more effective and efficient management measures to break away from traditional management methods, such as limitation of catch and fishing effort. The results presented that the objective risk index (ORIS) on sustainability of bigeye and yellowfin tunas by purse seine fishery was estimated high due to the high catch ratio of small fishes. The ORIs of biodiversity (ORIB) and habitat quality (ORIH) of purse seine fishery were also estimated at a high level from using fish-aggregating devices (FAD). However, due to skipjack tuna’s high catches, the ORI of socio-economic benefit (ORIE) was estimated at a very low level. Due to the high bycatch rate, ORIB was high, and ORIS and ORIH were evaluated at a low level in longline fishery. Due to strengthern of fishing restrictions and increase of fishing costs, the ORIE was assessed to be very high. The ecosystem risk index (ERI) for two tuna fisheries was assessed low, but the overall FAD management by purse seine fishery is necessary at the ecosystem level.
This study would present a risk analysis method to evaluate stable tap water supply in a multi-regional water supply system and propose a measure for the evaluation of the effect of the conjunctive operation of the multi-regional water supply system using this. Judging from the vulnerability for the crisis response of the entire N. multi-regional water supply system, as compared to the result of Scenario 1 in which no conjunctive pipes were operated, it was found that in Scenario 2, in which conjunctive pipes were partially operated, the vulnerability of crisis response decreased by about 30.6%, and as compared to Scenario 3, the vulnerability of crisis response decreased by 86.2%. In setting a plan for stable tap water supply in N multi-regional water supply system, using the estimated value and the method for the evaluation of the vulnerability of crisis response by pipe, by interval and by line, it is judged that this can be utilized as a basis for the judgment of the evaluation of the operation or the additional installation of conjunctive pipes.
One of the most effective methods to consistently ensure the safety of a tap water supply can be achieved by application of a comprehensive risk assessment and risk management approach for drinking water supply systems. This approach can be termed water safety plans(WSP) which recommended by WHO(world health organization) and IWA(international water association). For the introduction of WSP into Korea, 150 hazards were identified all steps in drinking water supply from catchment to consumer and risk assessment tool based on frequency and consequence of hazards were developed. Then, developed risk assessment tool by this research was implemented at a water treatment plant(Q=25,000 m3/d) to verify its applicability, and several amendments were recommended; classification of water source should be changed from groundwater to stream to strengthen water quality monitoring contaminants and frequencies; installation of aquarium to monitor intrusion of toxic substances into raw water; relocation or new installation on-line water quality analyzers for efficient water quality monitoring; change of chlorination chemical from solid phase(Ca(OCl)2) to liquid phase(NaOCl) to improve soundness of chlorination. It was also meaningful to propose hazards and risk assessment tool appropriate for Korea drinking water supply systems through this research which has been inconsistent among water treatment authorities. Key words: Hazard, Reliability, Risk management, Water safety plan, Tap water
A nationwide survey of 8 N-nitrosamines in finished water samples from drinking water treatment plants (DWTPs) in Korea was conducted. The samples were pre-treated by solid-phase extraction (SPE) and analyzed using a gas chromatography coupled with tandem mass spectrometry (GC-MS/MS). According to the study results, four N-nitrosamines (NDMA, NDEA, NMOR, NDBA) were detected for three consecutive years, NMEA and NPYR were only found in samples collected in 2013. Two of these N-nitrosamines, N-nitrosodimethylamine (NDMA) and N-nitrosodiethylamine (NDEA), have received attention and were the most commonly detected. The concentration of NDMA and NDEA in this study ranged from 0.002 μg/L to 0.013 μg/L and in 0.001 μg/L to 0.008 μg/L, respectively. In comparison to studies performed in EPA(UCMR2), the concentrations of NDMA (from 0.002 μg/L to 0.630 μg/L) and NDEA (from 0.005 μg/L to 0.100 μg/L) observed in the this study were low.
이염화이소시아뉼산나트륨(NaDCC) 주입 선박평형수처리설비(BWMS, ballast water treatment system)에 의해 처리된 배출수 내에는 브롬 및 염소계열의 활성물질과 소독부산물질(DBPs, disinfection by-products)들이 포함되어 있다. 본 연구에서는 NaDCC로 처리된 선박평형수가 해양환경에 미치는 생태위해성을 파악하기 위하여 생태독성시험(WET test, whole effluent toxicity test)과 생태위해성평가(ERA, ecological risk assessment)를 수행하였다. 배출수독성 시험종은 규조류(Skeletonema costatum, Navicula pelliculosa), 녹조류(Dunaliella tertiolecta, Pseudokirchneriella subcapitata), 로티퍼(Brachionus plicatilis, Brachionus calyciflorus) 및 어류(Cyprinodon variegatus, Pimephales promelas)로 8개의 해양 및 담수종을 이용하였다. 생태독성시험결과, 규조류 및 녹조류를 이용한 성장저해시험에서만 명확한 독성영향이 나타났으며 해수의 시험 조건에서 무영향농도(NOEC, no observed effect concentration), 최저영향농도(LOEC, lowest observable effect concentration) 및 반수영향농도(EC50, effect concentration of 50%)는 각각 25.0 %, 50.0 % 및 > 100.0 %로 가장 민감한 영향을 나타냈다. 하지만 로티퍼 및 어류를 이용한 독성시험의 경우 모든 염분 구간에서 독성영향이 나타나지 않았다. 한편, 배출수에 대한 화학물질분석결과, bromate, isocyanuric acid, formaldehyde, chloropicrin과 trihalomethanes (THMs), halogenated acetonitriles (HANs), halogenated acetic acid (HAAs) 등 총 25개의 소독부산물질들이 검출되었다. ERA결과, 25 개의 소독부산물질들 중, 지속성(P), 생물축척성(B) 및 생물독성(T)의 특성을 모두 보이는 물질은 없었다. 예측환경농도(PEC, predicted environmental concentration) /예측무영향농도(PNEC, predicted no effect concentration) 비율은 일반적인 항구 환경에서는 모든 물질이 1.0을 초과 하지 않았지만 선박 최 인접지역의 경우 Isocyanuric acid, Tribromomethane, Chloropicrin 및 Monochloroacetic acid가 1.0을 초과하여 위해성이 있을 것으로 나타났다. 하지만 실제 배출수를 이용한 생태독성시험결과의 NOEC (25.0%)를 적용한 결과 NaDCC로 처리된 선박평형수가 해양에 배출되었을 때 선박 최 인접지역을 포함한 일반적인 항구 환경에 수용 불가한 생태위해성을 가지지 않는 것으로 판단된다.
The chemical structures of perfluorinated compounds(PFCs) have unique properties such as thermal and chemical stability that make them useful components in a wide variety of consumer and industrial products. Two of these PFCs, perfluorooctane sulfonate(PFOS) and perfluorooctanoic acid(PFOA), have received attention and were the most commonly detected. In this study it was analyzed the concentrations of 8 PFCs in samples were collected from drinking water treatment plants for 5 years(2012-2016). PFOS and PFOA were also high concentration and frequency. The mean concentrations of PFOA and PFOS were detected 0.0026-0.0069 μg/L and 0.0009-0.0024 μg/L in samples from drinking water treatment plants. These were relatively lower or similar compared to PFOS concentrations in Osaka(Japan). In general, these levels are below health-based values set by international authoritative bodies for drinking water. These results will be serve as the first monitoring data for PFCs in drinking water and be useful for characterizing the concentration distribution and management of PFCs in future studies.
This study is carried out in order to propose a drought risk assessment methodology. This methodology is required to deal with practical questions that a variety of stakeholder often raise in the course of discussions on mitigation measures. With a focus on the socioeconomic aspect of drought, more particularly, residents’ hardship from water scarcity, it suggests basic concepts and a system of methods in order to assess hazard, exposure, vulnerability and risk. The case study shows a considerable possibility of the methodology in evaluating potential levels of damages in a certain area, in identifying the boundary of districts where risk is disproportionately concentrated, and also in understanding the underlying risk factors of those districts. The authors think that the proposed methodology is able to offer risk information in terms of socioeconomic damages, and therefore contribute to reducing information gaps that policy-makers are currently encountered with.
The function failure of present major facilities is likely to lead to failure of related systems and/or whole facilities, increasing the necessity for protection of infrastructures, main structures, and major industrial facilities. In addition, safe and efficient management for urban infrastructure (waterworks and sewerage facilities, electricity, telecommunications, roads, etc) installed in the basement or on large cities grounds at various public areas is required. Recently in response to this demand, efforts for vitalizing asset management are being made such as enacting related laws and developing asset management system in the U.S., Australia, Europe and other advanced countries with the concept for a new maintenance. In our county, identifying maintenance system problems such as aging and rapid increasing of existing infrastructures and decision-making about updating maintenance is required for systematic and organizational maintenance. In this study, by comparing and observing the LOS(Level of Service) of each countries’ waterworks and risk-based LOS, we suggest the direction of future urban water infrastructure management systems for more effective management.
It is expected that the temperature in Pyeongyang will be similar to that (16.6℃) in Seogwipo in the late 21st century, and most of South Korea will enter the subtropical climate due to climate change. Change in the precipitation pattern like the range of fluctuation caused by climate change will lead to expanded uncertainty in securing reliable water supply, along with a serious impact on demands for living and industrial water due to change in the volume and period of river outflow. As industrial water for production activities is estimated based on the contract quantity, it is difficult to apply rationalization of water usage and incentives in water recycling. Therefore many companies are making efforts in complying with the effluent standard while spending few resources on such rationalization and recycling.
This study researched water risk management over 115 Korean companies by 28 questions in 4 categories. Through the research, this study aims to understand water risk management levels and seek response plans.
This study was carried out to analyze water suspension in the water supply system through fault tree analysis. And quantitative factors was evaluated to minimize water suspension. Consequently the aim of this study is to build optimal planning by analyzing scenarios for water suspension.Accordingly the fault tree model makes it possible to estimate risks for water suspension, current risks is 92.23 m3/day. The result of scenario analysis by pipe replacement, risks for water suspension was reduced 7.02 m3/day when replacing WD4 pipe. As a result of scenario analysis by water district connections, the amount of risk reduction is maximized when it is connecting to network pipe of D Zone. Therefore, connecting to network pipe for D Zone would be optimal to reduce risk for water suspension.
According to 2012 OECD environmental report, Korea was ranked as the first country of water stress. Water footprint is a method to calculate water usage during the life cycle of a product from material procurement through production to disposal to recycle and to quantify the load to water resources. In water footprint calculation, water consumption unit is used. Agricultural water use is over 48% so it is urgent to mange that area Korea needs to spread the discussion about water footprint as quickly as possible, for the study to prevent social and environmental problems due to water shortage. This paper, through water footprint calculation and comparison in Chungju and Geochang areas, looks to counter measures for water risk, targeting domestically-produced apple.
Spills of M/V Hebei Spirit on 7th December 2007 caused a seriously damage to the ecosystem of Korean coast. Of these, microbial communities (i.e., attached benthic micro-algae) were reported to be sentive to the environmental change so it can be used for ecological risk assessment. Our experiment was designed to examine the ecological risk assessments for oil pollutant using benthic attached algal community on the artificial substrates of acrylic plates. Field monitoring in the culture system was conducted in Jangmok Bay. The abundances of attached micro-algae on artificial substrates gradually increased with increasing of sampling times. Among them, diatoms were the most important colonizer of coastal water, with the genera Cylindrotheca and Navicular most abundant. In particular, developed the culture system has correctly measured qualitative and quantitative abundance of attached micro-algae because same acrylic plates as artificial substrates were used. Thus, this culture system may be directly applied to the ecological risk experiments of microbial community structure from oil pollutants.
용수공급시스템은 용수를 안정적으로 확보하여 사용자의 수요량을 충족시키는 것을 목표로 하지만, 평년보다 적은 유입량으로 인해 정상공급에 실패하는 경우가 발생한다. 그러나 강수의 부족으로 발생하는 가뭄 상황이 언제나 용수공급 실패를 유발하는 것은 아니기 때문에, 용수공급에 대한 안전도를 산정할 때 실질적인 용수 부족 사상의 특성을 고려할 필요가 있다. 이를 위해 본 연구에서는 이수안전도 평가 지표로 주로 사용되는 신뢰도와 취약도를 이용하여 결합 가뭄관리지수(JDMI)를 개발하였으며, 이를 바탕으로 미래 용수공급 위험도를 산정하였다. 미래에 대한 분석을 위해 RCP 4.5 및 8.5 시나리오에 대하여 GCM으로부터 생산된 기후변화 시나리오 자료를 적용하고 미래 기간을 21세기 전기, 중기, 및 후기로 구분하였다. JDMI를 기반으로 낙동강 유역의 용수공급 위험도를 분석한 결과 RCP 4.5 시나리오에서 RCP 8.5 시나리오보다 위험도가 더 높은 것으로 분 석되었다. 용수공급 취약지역은 RCP 4.5에서는 남강댐(W18)으로 나타났으며, RCP 8.5에서는 형산강(W23)과 낙동강남해(W33) 유역으로 분석되었다.
The primary purpose of this study was to determine the risk of various disease outcomes due to exposure to cyanobacteria toxin (microcystin-LR) through drinking water in a Korean watershed. In order to determine the risk in a more quantitative way, the risk assessment framework developed by the National Research Council (NRC) of the United States (US) - hazard identification, dose-response relationship, exposure assessment, and risk characterization - was used in this study. For dose-response relationships, a computer software (BenchMark Dose Software (BMDS)) developed by the US Environmental Protection Agency (EPA) was used to fit the data from previous studies showing the relationship between the concentration of microcystin-LR and various disease outcomes into various dose-response models. For exposure assessment, the concentrations of microcystin-LR in the source water and finished water in a Korean watershed obtained from a recent study conducted by the Ministry of Environment of Korea were used. Finally, the risk of various disease outcomes due to exposure to cyanobacteria toxin (microcystin-LR) through drinking water was characterized by Monte-Carlo simulation using Crystall Ball program (Oracle Inc.) for adults and children. The results of this study suggest that the risk of disease due to microcystin-LR toxin through drinking water is very low and it appears that current water treatment practice should be able to protect the public from the harmful effects of cyanobacteria toxin (microcystin-LR) through drinking water.
최근 한국 근해 및 내륙에서 발생되는 지진의 횟수가 증가함에 따라 지진피해 가능성에 대한 우려가 증가되고 있으며, 지진재해가 발생하였을 경우 신속한 대책을 마련해야 한다는 필요성이 부각되고 있다. 그러나 대규모 사회기반 시설중의 하나인 상수관망 시스템의 경우, 국내 전체 503개소 중 현행 내진설계기준을 만족하는 곳이 전무(소방방재청, 2013)할 정도로 지진재해에 매우 취약하다. 상수도 시설의 경우 구조해석을 통한 개별 구조물의 내진성능평가 뿐 만 아니라, 물 공급가능성을 포함하는 수리학적 위험도(또는 신뢰도) 평가가 반드시 필요하다. 본 연구에서는 수리해석을 기반으로 한 상수관망 지진재해 위험도 산정 프로그램을 개발하였다. 이를 위해 과거 한반도에 발생한 지진자료를 활용하여 지진 발생시나리오를 구성하는 모듈을 구축하였다. 또한 지진 발생에 의해 나타나는 상수도 관망 구성요소(관로, 펌프, 배수지)의 피해 상태를 취약도 함수에 의해 결정하고, 이를 적절히 반영하여 수리해석 결과가 도출되도록 모형화하였다. 본 연구에서 개발된 프로그램을 실제 상수관망 시스템에 적용한 결과, 적용지역에 가까운 곳에서 발생한 과거 지진을 상정하였을 경우 나타난 신뢰도는 지진 재해에 의한 피해를 무시할 수 있는 수준은 아니었으며, 특히 설계 기준에 해당하는 큰 강도의 지진이 발생할 경우 상수관망 시스템의 전반적인 마비가 초래될 수 있음을 확인하였다. 따라서 본 모형은 상수관망의 설계와 사전보강을 위한 의사결정 수단으로 활용될 수 있을 것으로 판단된다.
본 연구에서는 안전하고 원활한 용수공급을 목적으로 하는 상수도관망시스템의 오염예방 및 위험관리를 위한 통합의사결정시스템의 기본구조를 제시하고 유럽과 미국에서 널리 사용되고 있는 다기준 의사결정기법인 PROMETHEE와 ANP를 적용해 상수도관망의 이상징후 판정을 위한 위험요소들의 우선순위를 평가하였다. 문제 구성을 위하여 pH 잔류염소농도, 유량, 수압, 전기전도도, 탁도, 블록누수량, 수온을 자료항목으로 선정하였고 관부식, 관파열, 관내수질오염을 평가