검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 160

        22.
        2021.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Here, Zn ferrite is synthesized along with reduced graphene oxide (rGO) by a facile one-step hydrothermal method. The difference between the synthesized nanocomposites with those in other reported work is that the reaction conditions in this work are 160 oC for 12 h. The synthesized products are characterized by field-emission scanning electron microscopy, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and attenuated total reflection. Further, the adsorption property of rGO–Zn ferrite (rGZF) nanocomposite is studied after confirming its successful synthesis. The adsorption capacity of rGZFs toward rhodamine B (RB) is ˃ 9.3 mg/g, whereas that of bare ZF nanoparticles is 1.8 mg/g in aqueous media. The efficiencies of rGZF and bare ZF to remove RB are 99 % and 20 %, respectively. Employing rGZF, 60 % of RB is decomposed within 5 min. The kinetic study reveals that the adsorption process of removing RB by bare Zn ferrite follows pseudo-firstorder kinetics. However, after zinc ferrite is incorporated with rGO, the kinetics changes to pseudo-second-order. Furthermore, the Langmuir isotherm is accomplished by the adsorption process employing rGZF, indicating that a monolayer adsorption process occurs. The thermodynamic parameters of the process are also calculated.
        4,000원
        23.
        2021.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Zinc-ion Batteris (ZIBs) are recently being considered as energy storage devices due to their high specific capacity and high safety, and the abundance of zinc sources. Especially, ZIBs can overcome the drawbacks of conventional lithium ion batteris (LIBs), such as cost and safety issues. However, in spite of their advantages, the cathode materials under development are required to improve performance of ZIBs, because the capacity and cycling stability of ZIBs are mainly influenced by the cathode materials. To design optimized cathode materials for high performance ZIBs, a novel manganese oxide (MnO2) coated graphite sheet is suggested herein with improved zinc-ion diffusion capability thanks to the uniformly decorated MnO2 on the graphite sheet surface. Especially, to optimize MnO2 on the graphite sheet surface, amounts of percursors are regulated. The optimized MnO2 coated graphite sheet shows a superior zinc-ion diffusion ability and good electrochemical performance, including high specific capacity of 330.8 mAh g−1 at current density of 0.1 A g−1, high-rate performance with 109.4 mAh g−1 at a current density of 2.0 A g−1, and remarkable cycling stability (82.2 % after 200 cycles at a current density of 1.0 A g−1). The excellent electrochemical performance is due to the uniformly decorated MnO2 on the graphite sheet surface, which leads to excellent zinc-ion diffusion ability. Thus, our study can provide a promising strategy for high performance next-generation ZIBs in the near future.
        4,000원
        24.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Using lanthanum zinc oxide (LZO) film with the ion-beam irradiation, uniform and homogeneous liquid crystal (LC) alignment was achieved. To fabricate the LZO thin film on glass substrate, solution process was conducted as a deposition method. Cross-polarized optical microscopy (POM) and the crystal rotation method reveal the state of LC alignment on the ion-beam irradiated LZO film. Between orthogonally placed polarizers, POM image showed constant black color with regular transmittance. Furthermore, collected incidence angle versus transmittance curve from the crystal rotation method revealed that the LC molecules on the ion-beam irradiated LZO film were aligned homogeneously. Atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) were conducted to reveal the relationship between the ion-beam irradiation and the LC alignment. The ion-beam irradiation changed the LZO film surface to rougher than before by etching effect. Numerical roughness values from AFM analysis supported this phenomenon specifically. XPS analysis showed the chemical composition change due to the ion-beam irradiation by investigation of O 1s, La 3d and Zn 2p spectra. The ion-beam irradiation induced the breakage of chemical bonds in the LZO film surface and this occurred surface chemical anisotropic characteristics for uniform LC alignment.
        4,000원
        25.
        2020.12 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 살균제, 항진균제 등의 의약품을 포함하여 다양한 목적으로 사용되며, 신방오도 료로서의 가능성이 확인된 바 있는 Zinc undecylenate (ZU)를 이용해 연안환경 내 1차 소비자를 대표할 수 있는 성게 2종(H. pulcherrimus, M. nudus)에 대한 독성평가를 실시하였다. 실험결과 ZU에 대한 H. pulcherrimus와 M. nudus의 수정률 EC50은, 각각 11.27 mgl-1과 1.48 mgl-1로 나 타났다. 또한, 정상배아 발생률의 EC50은 각각 0.94 mgl-1와 3.78 mgl-1로 나타났으며, NOEC는 0.20 mgl-1, 0.78 mgl-1를 나타내었다. 본 연구에서 도출된 성게 2종과 문헌조사를 통한 연안양 식생물 2종의 급성독성결과를 이용하여 Predicted No Effect Concentration (PNEC)를 계산하였 다. PNEC 값은 0.0094 mgl-1로 나타났으며, 위와 같은 결과는 해양환경 오염물질에 대한 환경 보호전략 수립을 위한 기초자료로 활용될 것이다.
        4,000원
        26.
        2020.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        For zinc-air batteries, there are several limitations associated with zinc anodes. The self-discharge behavior of zincair batteries is a critical issue that is induced by corrosion reaction and hydrogen evolution reaction (HER) of zinc anodes. Aluminum and indium are effective additives for controlling the hydrogen evolution reaction as well as the corrosion reaction. To enhance the electrochemical performances of zinc-air batteries, mechanically alloyed Zn-Al and Zn-In materials with different compositions are successfully fabricated at 500rpm and 5h milling time. Investigated materials are characterized by X-ray diffractometer (XRD), field emission scanning electron microscope (FE-SEM), and energy dispersive spectrometer (EDS). Alloys are investigated for the application as novel anodes in zinc-air batteries. Especially, the material with 3 wt% of indium (ZI3) delivers 445.37 mAh/g and 408.52 mAh/g of specific discharge capacity with 1 h and 6 h storage, respectively. Also, it shows 91.72 % capacity retention and has the lowest value of corrosion current density among attempted materials.
        4,000원
        27.
        2020.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A zinc-air battery consists of a zinc anode, an air cathode, an electrolyte, and a separator. The active material of the positive electrode is oxygen contained in the ambient air. Therefore, zinc-air batteries have an open cell configuration. The external condition is one of the main factors for zinc-air batteries. One of the most important external conditions is temperature. To confirm the effect of temperature on the electrochemical properties of zinc-air batteries, we perform various analyses under different temperatures. Under 60 oC condition, the zinc-air cell shows an 84.98 % self-discharge rate. In addition, high corrosion rate and electrolyte evaporation rate are achieved at 60 oC. Among the cells stored at various temperature conditions, the cell stored at 50 oC delivers the highest discharge capacity; it also shows the highest self-discharge rate (65.33 %). On the other hand, the cell stored at 30 oC shows only 2.28 % self-discharge rate.
        4,000원
        28.
        2020.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Synthesizing nanostructured thin films of oxide semiconductors is a promising approach to fabricate highly efficient photoelectrodes for hydrogen production via photoelectrochemical (PEC) water splitting. In this work, we investigate the feasibility as an efficient photoanode for PEC water oxidation of zinc oxide (ZnO) nanostructured thin films synthesized via a simple method combined with sputtering Zn metallic films on a fluorine-doped tin oxide (FTO) coated glass substrate and subsequent thermal oxidation of the sputtered Zn metallic films in dry air. Characterization of the structural, optical, and PEC properties of the ZnO nanostructured thin film synthesized at varying Zn sputtering powers reveals that we can obtain an optimum ZnO nanostructured thin film as PEC photoanode at a sputtering power of 40 W. The photocurrent density and optimal photocurrent conversion efficiency for the optimum ZnO nanostructured thin film photoanode are found to be 0.1 mA/cm2 and 0.51 %, respectively, at a potential of 0.72 V vs. RHE. Our results illustrate that the ZnO nanostructured thin film has promising potential as an efficient photoanode for PEC water splitting.
        4,000원
        29.
        2020.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Zinc-ion hybrid supercapacitors (ZICs) have recently been spotlighted as energy storage devices due to their high energy and high power densities. However, despite these merits, ZICs face many challenges related to their cathode materials, activated carbon (AC). AC as a cathode material has restrictive electrical conductivity, which leads to low capacity and lifetime at high current densities. To overcome this demerit, a novel boron (B) doped AC is suggested herein with improved electrical conductivity thanks to B-doping effect. Especially, in order to optimize B-doped AC, amounts of precursors are regulated. The optimized B-doped AC electrode shows a good charge-transfer process and superior electrochemical performance, including high specific capacity of 157.4 mAh g−1 at current density of 0.5 A g−1, high-rate performance with 66.6 mAh g−1 at a current density of 10 A g−1, and remarkable, ultrafast cycling stability (90.7 % after 10,000 cycles at a current density of 5 A g−1). The superior energy storage performance is attributed to the B-doping effect, which leads to an excellent charge-transfer process of the AC cathode. Thus, our strategy can provide a rational design for ultrafast cycling stability of next-generation supercapacitors in the near future.
        4,000원
        30.
        2020.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, partially dry transfer is investigated to solve the problem of fully dry transfer. Partially dry transfer is a method in which multiple layers of graphene are dry-transferred over a wet-transferred graphene layer. At a wavelength of 550 nm, the transmittance of the partially dry-transferred graphene is seen to be about 3% higher for each layer than that of the fully dry-transferred graphene. Furthermore, the sheet resistance of the partially drytransferred graphene is relatively lower than that of the fully dry-transferred graphene, with the minimum sheet resistance being 179 Ω/sq. In addition, the fully dry-transferred graphene is easily damaged during the solution process, so that the performance of the organic photovoltaics (OPV) does not occur. In contrast, the best efficiency achievable for OPV using the partially dry-transferred graphene is 2.37% for 4 layers.
        4,000원
        31.
        2020.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We prepare ZnO nanoparticles by environmentally friendly synthesis using Cyathea nilgiriensis leaf extract. Various phytochemical constituents are identified through the assessment of ethanolic extract of plant Cyathea nilgiriensis holttum by GC-MS analysis. The formation of ZnO nanoparticles is confirmed by FT-IR, XRD, SEM-EDX, TEM, SAED and PSA analysis. TEM observation reveals that the biosynthesized ZnO nanopowder has a hexagonal structure. The calculated average crystallite size from the high intense plane of (1 0 1) is 29.11 nm. The particle size, determined by TEM analysis, is in good agreement with that obtained by XRD analysis. We confirm the formation of biomolecules in plant extract by FT-IR analysis and propose a possible formation mechanism of ZnO nanoparticles. Disc diffusion method is used for the analyses of antimicrobial activity of ZnO nanoparticles. The synthesized ZnO nanoparticles exhibit antimicrobial effect in disc diffusion experiments. The biosynthesized ZnO nanoparticles display good antibacterial performance against B. subtilis (Gram-positive bacteria) and K. pneumonia (Gram-negative bacteria). Bio-synthesized nanoparticles using green method are found to possess good antimicrobial performance.
        4,000원
        32.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A new discrete bis-dithiolene complex, [ PPh4]2[Zn(DMED)2] (1; DMED = 1,2-dicarbomethoxy-1,2-dithiolate) with sulfurbased radical character was synthesized and structurally characterized. Complex 1 is stable and exhibits a square planar geometry around the zinc metal. 1 forms nanospheres through a one-pot water-induced self-assembly in a mixture of solvents (acetonitrile–water). These nanospheres were further decorated with water-soluble carbon nanotubes (wsCNTs) through hydrogen bonding between the peripheral –COOCH3 groups of 1 and surfacial carboxyl groups of wsCNTs to assemble into a spherical nanocomposite. The as-prepared nanocomposite showed fluorescence emissions in visible region due to the separation of energy states of the nanospheres assisted by wsCNTs, suggesting the future possibilities of these new materials for use in biomedical application.
        4,000원
        33.
        2019.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A zinc-air battery is one of most promising advanced batteries due to its high specific energy density, low cost, and environmental friendliness. However, zinc anodes in zinc-air batteries lead to several issues including self-discharge, corrosion reaction, and hydrogen evolution reaction (HER). In this paper, viscosity of electrolyte has been controlled to suppress the corrosion reaction, HER, and self-discharge behavior. Various viscosity average molecular weights of poly(acrylic acid) (PAA) are adopted to prepare the electrolyte. The evaporation of electrolytes is proportional to the increase in molecular weight. In addition, enhanced self-discharge behavior is obtained when the gelling agent with high molecular weight is used. In addition, the zinc-air cell assembled with lower viscosity average molecular weight of PAA (Mv ~ 450,000) delivers 510.85 mAh/g and 489.30 mAh/g of discharge capacity without storage and with 6 hr storage, respectively. Also, highest capacity retention (95.78 %) is obtained among studied materials.
        4,000원
        34.
        2019.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The self-discharge behavior of zinc-air batteries is a critical issue induced by corrosion and hydrogen evolution reaction (HER) of zinc anode. The corrosion reaction and HER can be controlled by a gelling agent and concentration of potassium hydroxide (KOH) solution. Various concentrations of KOH solution and polyacrylic acid have been used for gel electrolyte. The electrolyte solution is prepared with different concentrations of KOH (6 M, 7 M, 8 M, 9 M). Among studied materials, the cell assembled with 6 M KOH gel electrolyte exhibits the highest specific discharge capacity and poor capacity retention. Whereas, 9 M KOH gel electrolyte shows high capacity retention. However, a large amount of hydrogen gas is evolved with 9 M KOH solution. In general, the increase in concentration is related to ionic conductivity. At concentrations above 7 M, the viscosity increases and the conductivity decreases. As a result, compared to other studied materials, 7 M KOH gel electrolyte is suitable for Zn-air batteries because of its higher capacity retention (92.00 %) and specific discharge capacity (351.80 mAh/g) after 6 hr storage.
        4,000원
        35.
        2019.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The ion-beam irradiated lanthanum zinc oxide (LZO) films were conducted as liquid crystal (LC) alignment layer to achieve uniform and homogeneous alignment of LC molecules. Polarized optical microscopy and the pre-tilt angle measurements revealed the alignment characteristics of LC molecules on the LZO film surface. Physical characteristics of the LZO film surface were analyzed by field emission scanning electron microscope and atomic force microscopy. The strong ion-beam irradiation on the LZO film changed surface rougher than before and induced physical anisotropic characteristics. Chemical composition of the LZO film was investigated by X-ray photoelectron spectroscopy and it was revealed that the ion-beam irradiation induced the breakage of the metal-oxide bonds. Due to this, anisotropic dipole moment which related with van der Waals force between LC molecules and alignment layer was induced. Because of this, LC molecules were anchored to the LZO film surface to achieve uniform LC alignment. Collecting the capacitance-voltage curve, residual DC of the LC cell with the LZO films was measured and it was verified that the LC cell with the LZO film had a nearly zero residual DC. Therefore, the ion-beam irradiated LZO film is an efficient method as an LC alignment layer
        4,000원
        37.
        2019.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        해산규조류 (Skeletonema cosatatum)의 개체군성장률 (r)을 사용하여 연안 유기오염물질인 phenanthrene (PHE) 과 zinc undecylenate (ZU)의 독성평가를 실시하였다. S. costatum을 PHE (0, 25, 50, 100, 200, 300 mg L-1)와 ZU (0, 5, 10, 15, 20, 25 mg L-1)에 각각 96시간 노출한 이후에 r 을 산 출하였고, 대조구의 r 은 0.04보다 높아 시험기준에 적합하였다. S. costatum의 r 은 PHE 50, ZU 10 mg L-1 이상의 농도 에서 대조구 대비 유의하게 감소하기 시작해 PHE와 ZU 의 농도가 증가할수록 감소되는 농도의존성을 나타냈으며, 최고농도인 300과 25 mg L-1 농도에서는 r 이 나타나지 않았다. PHE와 ZU에 노출된 S. costatum r 의 반수영향농도 (EC50)은 136.13, 16.95 mg L-1, 무영향농도 (NOEC)는 25, 5 mg L-1, 최소영향농도 (LOEC)는 50, 10 mg L-1로 나타났다. 본 연구결과, 해양생태계 내에서 S. costatum의 r 은 PHE 50 mg -1, ZU 10 mg L-1 이상의 농도에서 독성영향으로 감소할 것으로 판단되며, PHE와 ZU의 기준농도 설정을 위한 기초자료로 유용하게 사용될 것이다.
        4,000원
        38.
        2019.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study was to investigate the toxic effects of zinc in collembolan Paronychiurus kimi at the individual (survival and juvenile production) and population (population growth and age structure) levels after 28 days of exposure in artificially spiked soil. These toxic effects were interpreted in conjunction with the internal zinc concentrations in P. kimi. The EC50 value for juvenile production based on the total zinc concentration was 457 mg Zn kg-1 dry soil, while the LC50 value for adult survival and ri=0 value for population growth were within the same order of magnitude (2,623 and 1,637 mg Zn kg-1 dry soil, respectively). Significant differences in adult survival, juvenile production, and population growth compared with the control group were found at concentrations of 1,500, 375, and 375 mg Zn kg-1 dry or higher, respectively, whereas significant differences in the age structure, determined by the proportion of each age group in the population, were observed in all treatment groups. It appeared that the internal zinc level in P. kimi was regulated to some extent at soil zinc concentrations of ≤375 mg Zn kg-1 dry soil, but not at high soil zinc concentrations. These results indicate that, despite zinc being regulated by P. kimi, excess zinc exceeding the regulatory capacity of P. kimi can trigger changes in the responses at the individual and population levels. Given that population dynamics are affected not only by individual level but also by population level endpoints, it is concluded that the toxic effects of pollutants should be assessed at various levels.
        4,000원
        39.
        2019.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Zn-ion supercapacitors (ZICs) show high energy densities with long cycling life for use in electronic devices. Porous Zn electrodes as anodes for ZICs are fabricated by chemical etching process using optimized conditions. The structures, morphologies, chemical bonding states, porous structure, and electrochemical behavior are examined. The optimized porous Zn electrode shows a root mean square of roughness of 173 nm and high surface area of 153 μm2. As a result, ZIC using the optimized porous Zn electrode presents excellent electrochemical performance with high specific capacitance of 399 F g−1 at current density of 0.5 A g−1, high-rate performance (79 F g−1 at a current density of 10.0 A g−1), and outstanding cycling stability (99 % after 1,500 cycles). The development of energy storage performance using synergistic effects of high roughness and high surface area is due to increased electroactive sites by surface functionalization of Zn electrode. Thus, our strategy will lead to a rational design and contribute to next-generation supercapacitors in the near future.
        4,000원
        1 2 3 4 5