검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 49

        1.
        2024.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        에너지 패러다임의 변화가 요구되는 현대에 수소는 매력적인 에너지원이다. 이러한 수소를 정제하는 기술 중에서 분리막을 이용한 기술은 저비용으로 고순도의 수소를 정제할 수 있는 기술로 주목받고 있다. 그러나 수소 분리 성능이 뛰어 난 팔라듐(Pd)은 가격이 매우 비싸 이를 대체한 소재가 필요하다. 본 연구에서는 수소 투과 성능은 좋으나 수소 취성에 약한 니오븀(Nb)과 수소 투과 성능은 떨어지나 내구성이 뛰어난 니켈(Ni)과 지르코늄(Zr)을 혼합한 합금으로 분리막을 제조하여 1~4 bar, 350~450 °C 조건에서 수소 투과 특성을 확인하였다. Pd를 코팅하지 않은 Ni48Nb32Zr20 분리막의 경우 최대 0.69 ml/cm2/min의 투과량을 보였으며, Pd가 코팅된 경우에는 최대 13.05 ml/cm2/min의 투과량을 보였다.
        4,000원
        2.
        2023.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In order to broaden the range of application of light weight aluminum alloys, it is necessary to enhance the mechanical properties of the alloys and combine them with other materials, such as cast iron. In this study, the effects of adding small amounts of Cu and Zr to the Al-Si-Mg based alloy on tensile properties and corrosion characteristics were investigated, and the effect of the addition on the interfacial compounds layer with the cast iron was also analyzed. Although the tensile strength of the Al-Si-Mg alloy was not significantly affected by the additions of Cu and Zr, the corrosion resistance in 3.5 %NaCl solution was found to be somewhat lowered in this research. The influence of Cu and Zr addition on the type and thickness of the interfacial compounds layer formed during compound casting with cast iron was not significant, and the main interfacial compounds were identified to be Al5FeSi and Al8Fe2Si phases, as in the case of the Al-Si-Mg alloys.
        4,000원
        3.
        2021.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The purpose of this study is to develop a zirconium-based alloy with low modulus and magnetic susceptibility to prevent the stress-shielding effect and the generation of artifacts. Zr-7Cu-xSn (x = 1, 5, 10, 15 mass%) alloys are prepared by an arc melting process. Microstructure characterization is performed by microscopy and X-ray diffraction. Mechanical properties are evaluated using micro Vickers hardness and compression test. The magnetic susceptibility is evaluated using a SQUIDVSM. The average magnetic susceptibility value of the Zr-7Cu-xSn alloy is 1.176 × 108 cm3g1. Corrosion tests of zirconiumbased alloys are conducted through polarization test. The average Icorr value of the Zr-7Cu-xSn alloy is 0.1912 A/cm2. The elastic modulus value of 14 ~ 18 GPa of the zirconium-based alloy is very similar to the elastic modulus value of 15 ~ 30 GPa of the human bone. Consequently, the Sn added zirconium alloy, Zr-7Cu-xSn, is very interesting and attractive as a biomaterial that reduces the stress-shielding effect caused by differences of elastic modulus between human bone and metallic implants. In addition, this material has the potential to be used in metallic dental implants to effectively eliminate artifacts in MRI images due to low magnetic susceptibility.
        4,000원
        5.
        2019.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A triple-layered PMMA/Ni64Zr36/PDMS hydrogen gas sensor using hydrogen permeable alloy and flexible polymer layers is fabricated through spin coating and DC-magnetron sputtering. PDMS(polydimethylsiloxane) is used as a flexible substrate and PMMA(polymethylmethacrylate) thin film is deposited onto the Ni64Zr36 alloy layer to give a high hydrogenselectivity to the sensor. The measured hydrogen sensing ability and response time of the fabricated sensor at high hydrogen concentration of 99.9 % show a 20 % change in electrical resistance, which is superior to conventional Pd-based hydrogen sensors, which are difficult to use in high hydrogen concentration environments. At a hydrogen concentration of 5 %, the resistance of electricity is about 1.4 %, which is an electrical resistance similar to that of the Pd77Ag23 sensor. Despite using low cost Ni64Zr36 alloy as the main sensing element, performance similar to that of existing Pd sensors is obtained in a highly concentrated hydrogen atmosphere. By improving the sensitivity of the hydrogen detection through optimization including of the thickness of each layer and the composition of Ni-Zr alloy thin film, the proposed Ni-Zr-based hydrogen sensor can replace Pd-based hydrogen sensors.
        4,000원
        6.
        2017.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, the coating of an Al-Cr layer on the surface of a Zircaloy-4 alloy was carried out through plasma pretreatment coating and a laser surface melting process. Two different conditions for laser treatment, severe or minimal surface melting of the Zr alloy substrate, were applied to form the final coating. When there was significant surface melting of the Zr alloy, the solidification microstructure of the newly formed coating layer was mainly composed of needle-shaped Al3Zr, Al(Cr) and Al7Cr phases. On the other hand, the solidification microstructure of the coating layer was mainly composed of Al(Cr) and Al7Cr phases when there was minimal surface melting of Zr base in the laser process. However, when the coating was maintained at 1100 oC for 2 hours, significant inter-diffusion occurred between the phases in the coating. As a result, the upper part of the coating layer was observed to mainly consist of Al3Zr and Al8Cr5 phases, regardless of the laser treatment conditions.
        4,000원
        7.
        2016.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, the recently developed Al 2013 alloy was T8-tempered and, to improve the strength and corrosionresistance, slight amounts of Zr of 0.2 wt% and 0.5 wt%, respectively, were added and the mechanical properties were analyzed. For microstructure and precipitate analysis, OM observation, XRD analysis, and TEM analysis were performed, and for the mechanical property analysis, hardness and tensile strength tests were done. Also, in order to determine the corrosion rate according to the Zr content, a potentiodynamic polarization test was performed and the properties were compared and analyzed. The size of the precipitate varied with the content of Zr and was finest at Zr content of 0.2 wt%; it grew larger at 0.5 wt%, at which point the hardness value accordingly showed the same trend. On the other hand, as calculated from the aspect of chemical bonding among atoms, it was confirmed that the tensile strength and the corrosion-resistance increased with the same trend.
        4,000원
        8.
        2011.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Zr-Ti alloy powders were successfully synthesized by magnesium thermal reduction of metal chlorides. The evaporated and mixed gasses of were injected to liquid magnesium and the chloride components were reduced by magnesium leading to the formation of . The released Zr and Ti atoms were then condensed to particle forms inside the mixture of liquid magnesium and magnesium chloride, which could be dissolved fully in post process by 1~5% HCl solution at room temperature. By the fraction-control of individually injected and gasses, the final compositions of produced alloy powders were changed in the ranges of Zr-0 wt.%~20 wt.%Ti and their purity and particle size were about 99.4% and the level of several micrometers, respectively.
        4,000원
        9.
        2008.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Oxide effects experiments on massive hydriding reactions of Zr alloy with hydrogen gas were carried out at 400˚C under 1 atm in a H2 environment with a thermo-gravimetric apparatus (TGA). Experimental results for oxide effects on massive hydriding kinetics show that incubation time is not proportional to oxide thickness. The results also show that the massive hydriding kinetics of pre-filmed Zr alloys follows linear kinetic law and that the hydriding rates are similar to that of oxide-free Zr alloys once massive hydriding is initiated. Unlikely microstructure of the oxide during incubation time, physical defects such as micro-cracks and pores were observed in the oxide after incubation time. Therefore, it seems that the massive hydriding of Zr alloys can be ascribed to short circuit paths and mechanical or physical defects, such as micro-cracks and pores in the oxide, rather than to hydrogen diffusion through the oxide resulting from the increase of oxygen vacancies in the hypo-stoichiometric oxide.
        4,000원
        10.
        2008.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Since the 1990s, the second generation of Zirconium alloys containing main alloy compositions of Nb, Sn and Fe have been used as a replacement of Zircaloy-4 (Zr-Sn-Fe-Cr), a first-generation Zirconium alloy, to meet severe and rigorous reactor operating conditions characterized by high-burn-up, high-power and high-pH operations. In this study, the mechanical properties and creep behaviors of Zr-Sn-Fe-Cr and Zr-Nb-Sn-Fe alloys were investigated in a temperature range of 450~500˚C and in a stress range of 80~150 MPa. The mechanical testing results indicate that the yield and tensile strengths of the Zr-Nb-Sn-Fe alloy are slightly higher compared to those of Zr-Sn-Fe-Cr. This can be explained by the second phase strengthening of the β-Nb precipitates. The creep test results indicate that the stress exponent for the steady-state creep rate decreases with the increase in the applied stress. However, the stress exponent of the Zr-Sn-Fe-Cr alloy is lower than that of the Zr-Nb-Sn-Fe alloy in a relatively high stress range, whereas the creep activation energy of the former is slightly higher than that of the latter. This can be explained by the dynamic deformation aging effect caused by the interaction of dislocations with Sn substitutional atoms. A higher Sn content leads to a lower stress exponent value and higher creep activation energy.
        4,000원
        11.
        2007.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The hydrogen sorption speeds of amorphous alloy and its crystallized alloys were evaluated at room temperature. amorphous alloy was prepared by ball milling. The hydrogen sorption rate of the partially crystallized alloy was higher than that of amorphous. The enhanced sorption rate of partially crystallized alloy was explained in terms of grain refinement that has been known to promote the diffusion into metallic bulk of the gases. The grain refinement could be obtained by crystallization of amorphous phase resulting in the observed increase in sorption property.
        4,000원
        13.
        2006.04 구독 인증기관·개인회원 무료
        In the present study, ultrafined Zr-V-Fe based alloy powder prepared by a plasma arc discharge process with changing process parameters. The chemical composition of synthesized powder was strongly influenced by the process parameters, especially the hydrogen volume fraction in the powder synthesis atmosphere. The synthesized powder had an average particle size of 50 nm. The synthesized Zr-V-Fe based particles had a shell-core structure composed of metal in the core and oxidse in the shell.
        16.
        2005.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The hydrogen sorption speed of nanocrystalline and amorphous alloys was evaluated at room temperature. Nanocrystalline alloys of were prepared by planetary ball milling. The hydrogen sorption speed of nanocrystalline alloys was higher than that of the amorphous alloy. The enhanced sorption speed of nanocrystalline alloys was explained in terms of surface oxygen stability which has been known to retard the activation of amorphous alloys. The retardation can be reduced by formation of nanocrystals, which results in the observed increase in sorption properties
        4,000원
        1 2 3