검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 155

        4.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The injection molding process is a process in which thermoplastic resin is heated and made into a fluid state, injected under pressure into the cavity of a mold, and then cooled in the mold to produce a product identical to the shape of the cavity of the mold. It is a process that enables mass production and complex shapes, and various factors such as resin temperature, mold temperature, injection speed, and pressure affect product quality. In the data collected at the manufacturing site, there is a lot of data related to good products, but there is little data related to defective products, resulting in serious data imbalance. In order to efficiently solve this data imbalance, undersampling, oversampling, and composite sampling are usally applied. In this study, oversampling techniques such as random oversampling (ROS), minority class oversampling (SMOTE), ADASYN(Adaptive Synthetic Sampling), etc., which amplify data of the minority class by the majority class, and complex sampling using both undersampling and oversampling, are applied. For composite sampling, SMOTE+ENN and SMOTE+Tomek were used. Artificial neural network techniques is used to predict product quality. Especially, MLP and RNN are applied as artificial neural network techniques, and optimization of various parameters for MLP and RNN is required. In this study, we proposed an SA technique that optimizes the choice of the sampling method, the ratio of minority classes for sampling method, the batch size and the number of hidden layer units for parameters of MLP and RNN. The existing sampling methods and the proposed SA method were compared using accuracy, precision, recall, and F1 Score to prove the superiority of the proposed method.
        4,000원
        6.
        2022.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Transparent thin films of pure and nickel-doped ZrO2 are grown successfully by sol-gel dip-coating technique. The structural and optical properties according to the different annealing temperatures (300 oC, 400 oC and 500 oC) are investigated. Analysis of crystallographic properties through X-ray diffraction pattern reveals an increase in crystallite size due to increase in crystallinity with temperature. All fabricated thin films are highly-oriented along (101) planes, which enhances the increase in nickel doping. Scanning electron microscopy and energy dispersive spectroscopy are employed to confirm the homogeneity in surface morphology as well as the doping configuration of films. The extinction coefficient is found to be on the order of 102, showing the surface smoothness of deposited thin films. UV-visible spectroscopy reveals a decrease in the optical band gap with the increase in annealing temperature due to the increase in crystallite size. The variation in Urbach energy and defect density with doping and the change in annealing temperature are also studied.
        4,000원
        7.
        2022.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This study demonstrates a different approach method to fabricate antimony selenide (Sb2Se3) thin-films for the solar cell applications. As-deposited Sb2Se3 thin-films are fabricated via electrodeposition route and, subsequently, annealed in the temperature range of 230 ~ 310oC. Cyclic voltammetry is performed to investigate the electrochemical behavior of the Sb and Se ions. The deposition potential of the Sb2Se3 thin films is determined to be -0.6 V vs. Ag/AgCl (in 1 M KCl), where the stoichiometric composition of Sb2Se3 appeared. It is found that the crystal orientations of Sb2Se3 thin-films are largely dependent on the annealing temperature. At an annealing temperature of 250 oC, the Sb2Se3 thin-film grew most along the c-axis [(211) and/or (221)] direction, which resulted in the smooth movement of carriers, thereby increasing the carrier collection probability. Therefore, the solar cell using Sb2Se3 thin-film annealed at 250 oC exhibited significant enhancement in JSC of 10.03 mA/cm2 and a highest conversion efficiency of 0.821 % because of the preferred orientation of the Sb2Se3 thin film.
        4,000원
        8.
        2022.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A cold roll-bonding process using AA1050, AA5052 and AA6061 alloy sheets is performed without lubrication. The roll-bonded specimen is a multi-layer complex aluminum alloy sheet in which the AA1050, AA5052 and AA6061 sheets are alternately stacked. The microstructural evolution with the increase of annealing temperature for the roll-bonded aluminum sheet is investigated in detail. The roll-bonded aluminum sheet shows a typical deformation structure in which the grains are elongated in the rolling direction over all regions. However, microstructural evolution of the annealed specimen is different depending on the type of material, resulting in a heterogeneous microstructure in the thickness direction of the layered aluminum sheet. Complete recrystallization occurs at 250 oC in the AA5052 region, which is lower by 100K than that of the AA1050 region. Variation of the misorientation angle distribution and texture development with increase of annealing temperature also differ depending on the type of material. Differences of microstructural evolution between aluminum alloys with increase of annealing temperature can be mainly explained in terms of amounts of impurities and initial grain size.
        4,000원
        9.
        2021.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Cu2ZnSn(S,Se)4 (CZTSSe) based thin-film solar cells have attracted growing attention because of their earthabundant and non-toxic elements. However, because of their large open-circuit voltage (Voc)-deficit, CZTSSe solar cells exhibit poor device performance compared to well-established Cu(In,Ga)(S,Se)2 (CIGS) and CdTe based solar cells. One of the main causes of this large Voc-deficit is poor absorber properties for example, high band tailing properties, defects, secondary phases, carrier recombination, etc. In particular, the fabrication of absorbers using physical methods results in poor surface morphology, such as pin-holes and voids. To overcome this problem and form large and homogeneous CZTSSe grains, CZTSSe based absorber layers are prepared by a sputtering technique with different RTA conditions. The temperature is varied from 510 oC to 540 oC during the rapid thermal annealing (RTA) process. Further, CZTSSe thin films are examined with X-ray diffraction, X-ray fluorescence, Raman spectroscopy, IPCE, Energy dispersive spectroscopy and Scanning electron microscopy techniques. The present work shows that Cu-based secondary phase formation can be suppressed in the CZTSSe absorber layer at an optimum RTA condition.
        4,000원
        11.
        2021.03 KCI 등재후보 구독 인증기관 무료, 개인회원 유료
        페로브스카이트 태양전지는 빠른 속도로 효율 개선이 이루어지며 차세대 친환경 에너지원으로 각광받고 있다. 가공 매개변수의 영향을 강하게 받는 유-무기 혼합 페로브스카이트 태양전지에서 고품질의 광 활성층을 제조하는 것은 매우 중요하다. 본 연구에서는 Methylammonium Lead Iodide(MAPbI3) 광 활성층 제작 시, 결정화가 이루어지는 열처리 과정에서 압력을 가함으로써 용매가 증발하는 속도를 조절할 수 있는 가압열처리 공정방법(pressure assisted annealing process, PA method)을 개발하였다. 본 연구에서 개발한 광 활성층 제조방법은 보다 오래 용매를 활성층 내에 머물게 할 수 있어서 MAPbI3의 중간단계에서 그레인의 성장을 극대화 할 수 있으며, 이를 통해 고품질 페로브스카이트 광 활성층의 제조를 가능하게 한다. 또한 본 가압열처리 방법으로 형성시킨 페로브스카이트 광 활성층을 도입하여 태양전지를 제조하였을 경우, 소자의 최고 성능은 기존의 방법으로 제조된 소자와 비교하여 24.4 mA cm-2의 높은 단락 전류밀도, 0.96 V의 개방전압, 0.75의 필 팩터를 나타내며 17.3 %의 에너지 전환효율을 나타내었다.
        4,000원
        12.
        2020.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The photovoltaic properties of perovskite solar cells (PSCs) with a carbon electrode fabricated using different annealing processes are investigated. Perovskite formation (50 oC, 60 min) using a hot-plate and an oven is carried out on cells with a glass/fluorine doped TiO2/TiO2/ZrO2/carbon structure, and the photovoltaic properties of the PSCs are analyzed using a solar simulator. The microstructures of the PSCs are characterized using an optical microscope, a field emission scanning electron microscope, and an electron probe micro-analyzer (EPMA). Photovoltaic analysis shows that the energy conversion efficiency of the samples fabricated using the hot-plate and the oven processes are 2.08% and 6.90%, respectively. Based on the microstructure of the samples and the results of the EPMA, perovskite is formed locally on the carbon electrode surface as the γ-butyrolactone (GBL) solvent evaporates and moves to the top of the carbon electrode due to heat from the bottom of the sample during the hot plate process. When the oven process is used, perovskite forms evenly inside the carbon electrode, as the GBL solvent evaporates extremely slowly because heat is supplied from all directions. The importance of the even formation of perovskite inside the carbon electrode is emphasized, and the feasibility of oven annealing is confirmed for PSCs with carbon electrodes.
        4,000원
        13.
        2020.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Oxide semiconductor, represented by a-IGZO, has been commercialized in the market as active layer of TFTs of display backplanes due to its various advantages over a-Si. a-IGZO can be deposited at room temperature by RF magnetron sputtering process; however, additional thermal annealing above 300oC is required to obtain good semiconducting properties and stability. These temperature are too high for common flexible substrates like PET, PEN, and PI. In this work, effects of microwave annealing time on IGZO thin film and associated thin-film transistors are demonstrated. As the microwave annealing time increases, the electrical properties of a-IGZO TFT improve to a degree similar to that during thermal annealing. Optimal microwave annealed IGZO TFT exhibits mobility, SS, Vth, and VH of 6.45 cm2/Vs, 0.17 V/dec, 1.53 V, and 0.47 V, respectively. PBS and NBS stability tests confirm that microwave annealing can effectively improve the interface between the dielectric and the active layer.
        4,000원
        14.
        2020.09 KCI 등재후보 구독 인증기관 무료, 개인회원 유료
        본 논문에서는 유연/인쇄 전자 기술을 활용해 고성능의 유기물 반도체 기반 트랜지스터를 개발하고, 이를 통해 인공지능용 반도체 및 폴리모픽 전자회로에 응용하기 위해 공액구조 고분자 반도체 소재의 광파 어닐링 방법에 따른 특성 향상 효과를 연구하였다. 일반적으로 열처리를 위해 가장 많이 활용되는 핫플레이트의 경우 반도체 소자 특성의 균일도 문제와 높은 온도 및 열-용량으로 인한 플라스틱 기판 사용의 제한, 긴 어닐링 시간 등의 문제로 인해 실제 산업에서 활용하는데 어려움이 있다. 이를 해결하기 위해 광파를 활용한 효과적인 유기물 반도체 필름의 열처리 공정을 개발함으로써 Roll-to-Roll 방식의 고속/대면적 인쇄 공정에 적합한 열처리 방법과 반도체 층 전체의 높은 결정화도 유도를 통한 성능 향상과 소자 균일도 개선을 위한 방법을 개발하였다.
        4,000원
        16.
        2020.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Anticipation of welding deformation with finite element method is a very interested topic in the industries, adequate heat source model is essential for concluding reasonable results. This study is related to estimate the parameters of Goldak heat source model, and global optimization algorithm is applied to this research. The heat affected zone (HAZ) boundary line of bead on plate (BOP) welding is used as the target, parameters of heat sources are used as the variables. Adaptive simulated annealing is applied and the optimal result is obtained out of 1,000 candidates. The convergence of finite element method and the global optimization is meaningful for estimation of welding deformation, which could enhance to reduce the resources and time for experiments.
        4,000원
        17.
        2020.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The effect of intercritical annealing temperature on the microstructure and mechanical properties of Fe-9Mn-0.2C- 3Al-0.5Si medium manganese steels containing Cu and Ni is investigated in this study. Six kinds of medium manganese steels are fabricated by varying the chemical composition and intercritical annealing temperature. Hardness and tensile tests are performed to examine the correlation of microstructure and mechanical properties for the intercritical annealed medium manganese steels containing Cu and Ni. The microstructures of all the steels are composed mostly of lath ferrite, reverted austenite and cementite, regardless of annealing temperature. The room-temperature tensile test results show that the yield and tensile strengths decrease with increasing intercritical annealing temperature due to higher volume fraction and larger thickness of reverted austenite. On the other hand, total and uniform elongations, and strain hardening exponent increase due to higher dislocation density because transformation-induced plasticity is promoted with increasing annealing temperature by reduction in reverted austenite stability.
        4,000원
        18.
        2019.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this paper, nitrogen-doped reduced graphene oxide(rGO) is obtained by thermal annealing of nitrogen-containing compounds and graphene oxide (GO) manufactured by modified Hummers' method. We use melamine as a nitrogen-containing compound and treat GO thermally with melamine at over 800 ~ 1,000℃ and 1 ~ 3 hr under Ar atmosphere. The electrical conductivity of doped rGO is measured by 4-point probe method. As a result, nitrogen contents on rGO are found to be in the range of 2.5 to 12.5 at% depending on the doping conditions after thermal annealing. The main doping site on graphene oxide is changed from pyridinic-N and pyrrolinic N to the graphitic site as the heat treatment temperature increases. The electrical conductivity of doped rGO increases as the N doping content increases. As the thermal treatment time increases, the change of both total doping contents and doping sites is slight and the surface resistance is remarkably reduced, which is caused by healing effects of doped graphene oxide at high temperature.
        4,000원
        19.
        2019.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Cu2ZnSn(S,Se)4(CZTSSe) thin film solar cells areone of the most promising candidates for photovoltaic devices due to their earth-abundant composition, high absorption coefficient and appropriate band gap. The sputtering process is the main challenge to achieving high efficiency of CZTSSe solar cells for industrialization. In this study, we fabricated CZTSSe absorbers on Mo coated soda lime glass using different pressures during the annealing process. As an environmental strategy, the annealing process is performed with S and Se powder, without any toxic H2Se and/or H2S gases. Because CZTSSe thin films have a very narrow stable phase region, it is important to control the condition of the annealing process to achieve high efficiency of the solar cell. To identify the effect of process pressure during the sulfo-selenization, we experiment with varying initial pressure from 600 Torr to 800 Torr. We fabricate a CZTSSe thin film solar cell with 8.24 % efficiency, with 435 mV for open circuit voltage(VOC) and 36.98 mA/cm2 for short circuit current density(JSC), under a highest process pressure of 800 Torr.
        4,000원
        1 2 3 4 5